The triglyceride/glucose ratio is a reliable index of fasting insulin resistance: Observations from hyperinsulinaemic-euglycaemic clamp studies in young, normoglycaemic males from southern India

2020 ◽  
Vol 14 (6) ◽  
pp. 1719-1723
Author(s):  
Shajith Anoop ◽  
Felix K. Jebasingh ◽  
Grace Rebekah ◽  
Mathews Edatharayil Kurian ◽  
Venkataraghava R. Mohan ◽  
...  
2018 ◽  
Vol 115 (3) ◽  
pp. 590-601 ◽  
Author(s):  
Dino Premilovac ◽  
Emily Attrill ◽  
Stephen Rattigan ◽  
Stephen M Richards ◽  
Jeonga Kim ◽  
...  

Abstract Aims Angiotensin II (AngII) is a potent vasoconstrictor implicated in both hypertension and insulin resistance. Insulin dilates the vasculature in skeletal muscle to increase microvascular blood flow and enhance glucose disposal. In the present study, we investigated whether acute AngII infusion interferes with insulin’s microvascular and metabolic actions in skeletal muscle. Methods and results Adult, male Sprague-Dawley rats received a systemic infusion of either saline, AngII, insulin (hyperinsulinaemic euglycaemic clamp), or insulin (hyperinsulinaemic euglycaemic clamp) plus AngII. A final, separate group of rats received an acute local infusion of AngII into a single hindleg during systemic insulin (hyperinsulinaemic euglycaemic clamp) infusion. In all animals’ systemic metabolic effects, central haemodynamics, femoral artery blood flow, microvascular blood flow, and skeletal muscle glucose uptake (isotopic glucose) were monitored. Systemic AngII infusion increased blood pressure, decreased heart rate, and markedly increased circulating glucose and insulin concentrations. Systemic infusion of AngII during hyperinsulinaemic euglycaemic clamp inhibited insulin-mediated suppression of hepatic glucose output and insulin-stimulated microvascular blood flow in skeletal muscle but did not alter insulin’s effects on the femoral artery or muscle glucose uptake. Local AngII infusion did not alter blood pressure, heart rate, or circulating glucose and insulin. However, local AngII inhibited insulin-stimulated microvascular blood flow, and this was accompanied by reduced skeletal muscle glucose uptake. Conclusions Acute infusion of AngII significantly alters basal haemodynamic and metabolic homeostasis in rats. Both local and systemic AngII infusion attenuated insulin’s microvascular actions in skeletal muscle, but only local AngII infusion led to reduced insulin-stimulated muscle glucose uptake. While increased local, tissue production of AngII may be a factor that couples microvascular insulin resistance and hypertension, additional studies are needed to determine the molecular mechanisms responsible for these vascular defects.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Aidin Baghbani-Oskouei ◽  
Maryam Tohidi ◽  
Mitra Hasheminia ◽  
Fereidoun Azizi ◽  
Farzad Hadaegh

Abstract Background To examine the association between changes in fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and insulin-glucose ratio (IGR) levels, over approximately 3 years with incident hypertension. Methods A total of 2814 Iranian participants (1123 men) without hypertension and known diabetes at baseline and the first examination were followed for a median of 6.32 years. The associations between quartiles of changes in fasting insulin and IR indices with incident hypertension were assessed using multivariate Cox proportional hazard regression analyses with first quartile as reference. The models were adjusted for baseline values of insulin or each IR index, and age, sex, smoking, physical activity, educational levels, marital status, history of cardiovascular diseases, baseline levels of systolic and diastolic blood pressures, estimated glomerular filtration rate, triglycerides, total cholesterol, high-density lipoprotein cholesterol, fasting plasma glucose (only for insulin change) and both body mass index (BMI) per se, and its change. Akaike’s information criteria (AIC) was applied as indicator for goodness of fit of each predictive model. The discrimination ability of models was calculated using the Harrell’s C statistic. Results During the study, 594 incident cases of hypertension (253 men) were identified. The 4th quartile of changes in insulin, HOMA-IR, and IGR showed hazard ratios (95% confidence interval) of 1.31 (1.01–1.69), 1.18 (0.92–1.52), and 1.53 (1.18–1.98) for hypertension, respectively, in fully-adjusted models. Changes in fasting insulin levels and IR indices showed significant increasing trends for incident hypertension, moving from 1st to 4th quartiles (all P-values < 0.05). Focusing on model fitness, no superiority was found between changes in fasting insulin, HOMA-IR, and IGR to predict incident hypertension. The discriminatory powers of changes in fasting insulin and IR indices as assessed by C index were similar (i.e. about 80%). Conclusion Changes in fasting insulin and IR indices were significantly associated with developing hypertension among normotensive population even after considering BMI changes.


2019 ◽  
Vol 8 (5) ◽  
pp. 623 ◽  
Author(s):  
Alice Tang ◽  
Adelle C. F. Coster ◽  
Katherine T. Tonks ◽  
Leonie K. Heilbronn ◽  
Nicholas Pocock ◽  
...  

Background: Large cohort longitudinal studies have almost unanimously concluded that metabolic health in obesity is a transient phenomenon, diminishing in older age. We aimed to assess the fate of insulin sensitivity per se over time in overweight and obese individuals. Methods: Individuals studied using the hyperinsulinaemic-euglycaemic clamp at the Garvan Institute of Medical Research from 2008 to 2010 (n = 99) were retrospectively grouped into Lean (body mass index (BMI) < 25 kg/m2) or overweight/obese (BMI ≥ 25 kg/m2), with the latter further divided into insulin-sensitive (ObSen) or insulin-resistant (ObRes), based on median clamp M-value (M/I, separate cut-offs for men and women). Fifty-seven individuals participated in a follow-up study after 5.4 ± 0.1 years. Hyperinsulinaemic-euglycaemic clamp, dual-energy X-ray absorptiometry and circulating cardiovascular markers were measured again at follow-up, using the same protocols used at baseline. Liver fat was measured using computed tomography at baseline and proton magnetic resonance spectroscopy at follow-up with established cut-offs applied for defining fatty liver. Results: In the whole cohort, M/I did not change over time (p = 0.40); it remained significantly higher at follow-up in ObSen compared with ObRes (p = 0.02), and was not different between ObSen and Lean (p = 0.41). While BMI did not change over time (p = 0.24), android and visceral fat increased significantly in this cohort (ptime ≤ 0.0013), driven by ObRes (p = 0.0087 and p = 0.0001, respectively). Similarly, systolic blood pressure increased significantly over time (ptime = 0.0003) driven by ObRes (p = 0.0039). The best correlate of follow-up M/I was baseline M/I (Spearman’s r = 0.76, p = 1.1 × 10−7). Conclusions: The similarity in insulin sensitivity between the ObSen and the Lean groups at baseline persisted over time. Insulin resistance in overweight and obese individuals predisposed to further metabolic deterioration over time.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Negar Naderpoor ◽  
Jasmine G. Lyons ◽  
Aya Mousa ◽  
Sanjeeva Ranasinha ◽  
Maximilian P. J. de Courten ◽  
...  

Abstract Glomerular hyperfiltration has been associated with obesity, insulin resistance, and systolic blood pressure (SBP). However, previous studies are limited by confounders such as pre-existing diabetes or hypertension, or have used indirect measures of adiposity and insulin sensitivity (IS). Therefore, we examined the relationship between estimated glomerular filtration rate (eGFR) and IS measured by the hyperinsulinaemic euglycaemic clamp in a healthy population on no medications. We performed oral glucose tolerance test (OGTT) and measured % body fat (DEXA), BMI, blood pressure and M-value (hyperinsulinaemic euglycaemic clamp) in 104 individuals (44 females and 60 males). The majority of the study population (n = 89, 85.6%) were classified on their BMI as overweight/obese. eGFR was related to age, BMI, M-value (IS), 2-hour glucose levels post OGTT and white blood cell count (WBC) (all p < 0.05); but not to SBP (p = 0.1) or fasting glucose levels (p = 0.2). After adjustment for gender, BMI, SBP and WBC, the inverse association between eGFR and M-value (p = 0.001), and 2-hour glucose post OGTT (p = 0.02) persisted. In conclusion, although eGFR has been associated with BMI and blood pressure in previous studies, in our healthy population, eGFR was more closely related to markers of glucose metabolism (IS and 2-hour glucose post OGTT) than to BMI and blood pressure.


2011 ◽  
Vol 81 (6) ◽  
pp. 398-406 ◽  
Author(s):  
Akcam ◽  
Boyaci ◽  
Pirgon ◽  
Kaya ◽  
Uysal ◽  
...  

Objective: The aim of the study was to determine whether metformin or vitamin E treatment for six months is effective in reducing body weight, blood pressure, and also ameliorating insulin resistance, adiponectin, and tumor necrosis factor (TNF)-alpha in obese adolescents with non-alcoholic fatty liver disease (NAFLD). Methods: Sixty-seven obese adolescents with liver steatosis (age range, 9 - 17 years) were included in the study. The metformin group received an 850-mg dose of metformin daily and the vitamin E group received 400 U vitamin E /daily, in capsule form for 6 months, plus an individually tailored diet, exercise, and behavioral therapy. Results: After 6 months later, there was a significant decline in body mass index, and fasting insulin and homeostatic model assessment (HOMA) values in all three groups. Moreover, in comparingson of changes in HOMA among the groups, the metformin- treated group showed significantly improved metabolic control and insulin sensitivity (HOMA) at the end of the study. There were no significant differences for changes of adiponectin, TNF-alpha, in all three groups after 6 months study. Conclusion: These data suggest that metformin treatment is more effective than dietary advice and vitamin E treatment in reducing insulin resistance, and also in ameliorating metabolic parameters such as fasting insulin and lipid levels, in obese adolescents having NAFLD.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 50
Author(s):  
Monika Michalek-Zrabkowska ◽  
Piotr Macek ◽  
Helena Martynowicz ◽  
Pawel Gac ◽  
Grzegorz Mazur ◽  
...  

Objective: The aim of this research was to assess the relationship between prevalence and severity of obstructive sleep apnea (OSA) and insulin resistance among patients with increased risk of OSA without diabetes mellitus. Method and materials: our study group involved 102 individuals with suspected OSA, mean age 53.02 ± 12.37 years. Data on medical history, medication usage, sleep habits, sleep quality and daytime sleepiness, were obtained using questionnaires. All patients underwent standardized full night polysomnography. Serum fasting insulin and glucose concentration were analyzed, the homeostatic model assessment-insulin resistance (HOMA-IR) index was calculated. Results: polysomnographic study indicated that in the group with OSA mean values of apnea–hypopnea index (AHI), oxygen desaturation index (ODI), duration of SpO2 < 90% and average desaturation drop were significantly higher compared to the group without OSA, while the minimum SpO2 was significantly lower. The carbohydrate metabolism parameters did not differ within those groups. Significantly higher fasting insulin concentration and HOMA-IR index were found in the group with AHI ≥ 15 compared to the group with AHI < 15 and in the group with AHI ≥ 30 compared to the group with AHI < 30. Higher AHI and ODI were independent risk factors for higher fasting insulin concentration and higher HOMA-IR index. Increased duration of SpO2 < 90% was an independent risk factor for higher fasting glucose concentration. Conclusions: Individuals with moderate to severe OSA without diabetes mellitus had a higher prevalence of insulin resistance.


Author(s):  
Jalaledin Mirzay Razzaz ◽  
Hossein Moameri ◽  
Zahra Akbarzadeh ◽  
Mohammad Ariya ◽  
Seyed ali Hosseini ◽  
...  

Abstract Objectives Insulin resistance is the most common metabolic change associated with obesity. The present study aimed to investigate the relationship between insulin resistance and body composition especially adipose tissue in a randomized Tehrani population. Methods This study used data of 2,160 individuals registered in a cross-sectional study on were randomly selected from among subjects who were referred to nutrition counseling clinic in Tehran, from April 2016 to September 2017. Insulin resistance was calculated by homeostasis model assessment formula. The odds ratio (95% CI) was calculated using logistic regression models. Results The mean age of the men was 39 (±10) and women were 41 (±11) (the age ranged from 20 to 50 years). The risk of increased HOMA-IR was 1.03 (95% CI: 1.01–1.04) for an increase in one percent of Body fat, and 1.03 (95% CI: 1.00–1.05) for an increase in one percent of Trunk fat. Moreover, the odds ratio of FBS for an increase in one unit of Body fat percent and Trunk fat percent increased by 1.05 (adjusted odds ratio [95% CI: 1.03, 1.06]) and 1.05 (95% CI: 1.02, 1.08). Also, the risk of increased Fasting Insulin was 1.05 (95% CI: 1.03–1.07) for an increase in one unit of Body fat percent, and 1.05 (95% CI: 1.02–1.08) for an increase in one unit of Trunk fat percent. Conclusions The findings of the present study showed that there was a significant relationship between HOMA-IR, Fasting blood sugar, Fasting Insulin, and 2 h Insulin with percent of Body fat, percent of Trunk fat.


Sign in / Sign up

Export Citation Format

Share Document