Hypothalamic Control of Hepatic Glucose Production and Its Potential Role in Insulin Resistance

2008 ◽  
Vol 37 (4) ◽  
pp. 825-840 ◽  
Author(s):  
Christoph Buettner ◽  
Raul C. Camacho
2016 ◽  
Vol 311 (3) ◽  
pp. E620-E627 ◽  
Author(s):  
Tianru Jin ◽  
Jianping Weng

GLP-1 and its based drugs possess extrapancreatic metabolic functions, including that in the liver. These direct hepatic metabolic functions explain their therapeutic efficiency for subjects with insulin resistance. The direct hepatic functions could be mediated by previously assumed “degradation” products of GLP-1 without involving canonic GLP-1R. Although GLP-1 analogs were created as therapeutic incretins, extrapancreatic functions of these drugs, as well as native GLP-1, have been broadly recognized. Among them, the hepatic functions are particularly important. Postprandial GLP-1 release contributes to insulin secretion, which represses hepatic glucose production. This indirect effect of GLP-1 is known as the gut-pancreas-liver axis. Great efforts have been made to determine whether GLP-1 and its analogs possess direct metabolic effects on the liver, as the determination of the existence of direct hepatic effects may advance the therapeutic theory and clinical practice on subjects with insulin resistance. Furthermore, recent investigations on the metabolic beneficial effects of previously assumed “degradation” products of GLP-1 in the liver and elsewhere, including GLP-128–36 and GLP-132–36, have drawn intensive attention. Such investigations may further improve the development and the usage of GLP-1-based drugs. Here, we have reviewed the current advancement and the existing controversies on the exploration of direct hepatic functions of GLP-1 and presented our perspectives that the direct hepatic metabolic effects of GLP-1 could be a GLP-1 receptor-independent event involving Wnt signaling pathway activation.


2006 ◽  
Vol 291 (3) ◽  
pp. E536-E543 ◽  
Author(s):  
Chaodong Wu ◽  
Salmaan A. Khan ◽  
Li-Jen Peng ◽  
Honggui Li ◽  
Steven G. Carmella ◽  
...  

Hepatic insulin resistance is one of the characteristics of type 2 diabetes and contributes to the development of hyperglycemia. How changes in hepatic glucose flux lead to insulin resistance is not clearly defined. We determined the effects of decreasing the levels of hepatic fructose 2,6-bisphosphate (F26P2), a key regulator of glucose metabolism, on hepatic glucose flux in the normal 129J mice. Upon adenoviral overexpression of a kinase activity-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme that determines F26P2 level, hepatic F26P2 levels were decreased twofold compared with those of control virus-treated mice in basal state. In addition, under hyperinsulinemic conditions, hepatic F26P2 levels were much lower than those of the control. The decrease in F26P2 leads to the elevation of basal and insulin-suppressed hepatic glucose production. Also, the efficiency of insulin to suppress hepatic glucose production was decreased (63.3 vs. 95.5% suppression of the control). At the molecular level, a decrease in insulin-stimulated Akt phosphorylation was consistent with hepatic insulin resistance. In the low hepatic F26P2 states, increases in both gluconeogenesis and glycogenolysis in the liver are responsible for elevations of hepatic glucose production and thereby contribute to the development of hyperglycemia. Additionally, the increased hepatic gluconeogenesis was associated with the elevated mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1α and phospho enolpyruvate carboxykinase. This study provides the first in vivo demonstration showing that decreasing hepatic F26P2 levels leads to increased gluconeogenesis in the liver. Taken together, the present study demonstrates that perturbation of glucose flux in the liver plays a predominant role in the development of a diabetic phenotype, as characterized by hepatic insulin resistance.


2005 ◽  
Vol 289 (4) ◽  
pp. E551-E561 ◽  
Author(s):  
Eugenia Carvalho ◽  
Ko Kotani ◽  
Odile D. Peroni ◽  
Barbara B. Kahn

Adipose tissue plays an important role in glucose homeostasis and affects insulin sensitivity in other tissues. In obesity and type 2 diabetes, glucose transporter 4 (GLUT4) is downregulated in adipose tissue, and glucose transport is also impaired in muscle. To determine whether overexpression of GLUT4 selectively in adipose tissue could prevent insulin resistance when glucose transport is impaired in muscle, we bred muscle GLUT4 knockout (MG4KO) mice to mice overexpressing GLUT4 in adipose tissue (AG4Tg). Overexpression of GLUT4 in fat not only normalized the fasting hyperglycemia and glucose intolerance in MG4KO mice, but it reduced these parameters to below normal levels. Glucose infusion rate during a euglycemic clamp study was reduced 46% in MG4KO compared with controls and was restored to control levels in AG4Tg-MG4KO. Similarly, insulin action to suppress hepatic glucose production was impaired in MG4KO mice and was restored to control levels in AG4Tg-MG4KO. 2-Deoxyglucose uptake during the clamp was increased approximately twofold in white adipose tissue but remained reduced in skeletal muscle of AG4Tg-MG4KO mice. AG4Tg and AG4Tg-MG4KO mice have a slight increase in fat mass, a twofold elevation in serum free fatty acids, an ∼50% increase in serum leptin, and a 50% decrease in serum adiponectin. In MG4KO mice, serum resistin is increased 34% and GLUT4 overexpression in fat reverses this. Overexpression of GLUT4 in fat also reverses the enhanced clearance of an oral lipid load in MG4KO mice. Thus overexpression of GLUT4 in fat reverses whole body insulin resistance in MG4KO mice without restoring glucose transport in muscle. This effect occurs even though AG4Tg-MG4KO mice have increased fat mass and low adiponectin and is associated with normalization of elevated resistin levels.


1991 ◽  
Vol 260 (6) ◽  
pp. E938-E945 ◽  
Author(s):  
M. Gilbert ◽  
M. C. Pere ◽  
A. Baudelin ◽  
F. C. Battaglia

This study addresses whether elevated free fatty acids (FFA) contribute to the hepatic insulin resistance of pregnancy. We applied a euglycemic hyperinsulinemic clamp with or without Intralipid plus heparin infusion in conscious virgin and pregnant rabbits after an 18-h fast coupled with chronic catheterization of the hepatic and portal veins and femoral artery. A primed constant infusion of [3-3H]glucose was used to determine glucose fluxes. Insulin was infused into a mesenteric vein for 140 min. In pregnant rabbits, basal net hepatic uptake of lactate was almost two times that of nonpregnant rabbits. During a euglycemic hyperinsulinemic clamp there was a decline of approximately 65% in hepatic lactate uptake in nonpregnant rabbits at 80 min, whereas a similar decrease was observed only at 140 min in pregnant rabbits. This effect was blocked by lipid infusion. In the basal state the hepatic uptake of FFA was greater in pregnant than in nonpregnant animals. During the hyperinsulinemic clamp the hepatic uptake dropped by approximately 70 and approximately 30% in nonpregnant and pregnant females, respectively. Lipid infusion did not prevent the hepatic FFA uptake and hepatic ketone body output from decreasing. Hepatic glucose production was totally suppressed in the control period in nonpregnant animals but not during lipid infusion (approximately 65%). Hepatic glucose production was not significantly different between pregnant and nonpregnant rabbits during lipid infusion. Glucose utilization was markedly reduced in nonpregnant animals during lipid infusion to levels comparable with that in pregnant animals.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 130 (6) ◽  
pp. 1572-1577 ◽  
Author(s):  
Jing Luo ◽  
Marina Van Yperselle ◽  
Salwa W. Rizkalla ◽  
Florence Rossi ◽  
Francis R. J. Bornet ◽  
...  

2019 ◽  
Vol 20 (15) ◽  
pp. 3699 ◽  
Author(s):  
Norikiyo Honzawa ◽  
Kei Fujimoto ◽  
Tadahiro Kitamura

To date, type 2 diabetes is considered to be a “bi-hormonal disorder” rather than an “insulin-centric disorder,” suggesting that glucagon is as important as insulin. Although glucagon increases hepatic glucose production and blood glucose levels, paradoxical glucagon hypersecretion is observed in diabetes. Recently, insulin resistance in pancreatic α cells has been proposed to be associated with glucagon dysregulation. Moreover, cell autonomous dysfunction of α cells is involved in the etiology of diabetes. In this review, we summarize the current knowledge about the physiological and pathological roles of glucagon.


Sign in / Sign up

Export Citation Format

Share Document