A species-specific fish passage model based on hydraulic conditions and water temperature

2021 ◽  
Vol 65 ◽  
pp. 101407
Author(s):  
Marcia S. Meixler
2020 ◽  
Vol 12 (20) ◽  
pp. 3360
Author(s):  
Jessica Esteban ◽  
Ronald E. McRoberts ◽  
Alfredo Fernández-Landa ◽  
José Luis Tomé ◽  
Miguel Marchamalo

Forest/non-forest and forest species maps are often used by forest inventory programs in the forest estimation process. For example, some inventory programs establish field plots only on lands corresponding to the forest portion of a forest/non-forest map and use species-specific area estimates obtained from those maps to support the estimation of species-specific volume (V) totals. Despite the general use of these maps, the effects of their uncertainties are commonly ignored with the result that estimates might be unreliable. The goal of this study is to estimate the effects of the uncertainty of forest species maps used in the sampling and estimation processes. Random forest (RF) per-pixel predictions were used with model-based inference to estimate V per unit area for the six main forest species of La Rioja, Spain. RF models for predicting V were constructed using field plot information from the Spanish National Forest Inventory and airborne laser scanning data. To limit the prediction of V to pixels classified as one of the main forest species assessed, a forest species map was constructed using Landsat and auxiliary information. Bootstrapping techniques were implemented to estimate the total uncertainty of the V estimates and accommodated both the effects of uncertainty in the Landsat forest species map and the effects of plot-to-plot sampling variability on training data used to construct the RF V models. Standard errors of species-specific total V estimates increased from 2–9% to 3–22% when the effects of map uncertainty were incorporated into the uncertainty assessment. The workflow achieved satisfactory results and revealed that the effects of map uncertainty are not negligible, especially for open-grown and less frequently occurring forest species for which greater variability was evident in the mapping and estimation process. The effects of forest map uncertainty are greater for species-specific area estimation than for the selection of field plots used to calibrate the RF model. Additional research to generalize the conclusions beyond Mediterranean to other forest environments is recommended.


2013 ◽  
Vol 102 (1) ◽  
pp. 194-208 ◽  
Author(s):  
Kiona Ogle ◽  
Sharmila Pathikonda ◽  
Karla Sartor ◽  
Jeremy W. Lichstein ◽  
Jeanne L. D. Osnas ◽  
...  

2019 ◽  
Vol 7 (2) ◽  
pp. 1
Author(s):  
Oleksandr Potrokhov ◽  
Oleg Zinkovskyi ◽  
Mykola Prychepa ◽  
Yurii Khudiiash

Recently, the water temperature significantly exceeded the climatic norms for the studied region of Ukraine. Water is heated to 30ºC with a decrease in the concentration of dissolved oxygen in shallow water. In this connection, the change in the hormone content in the blood plasma of carp, roach, rudd, perch and ruff in response to these factors has been studied. Most of the fish species studied in June respond by increasing the cortisol content in the blood by 1.2–3.3 times to an increase in water temperature. Fish quite successfully adapts after a month's stay in conditions of high water temperature to 31ºC, and the level of cortisol is reduced. The content of thyroid hormones in the blood of the rudd, roach and ruff is quite high and after a month of adaptation to the existing factors. This indicates an increased activity in their metabolic processes. The content of somatotropin and prolactin in the blood of the studied fish species decreases 2.4–5.0 and 1.9–7.7 times, respectively, in response to an increase in temperature and a decrease in the oxygen concentration in water. This should lead to a decrease in the rate of fish growth and change in the activity of osmotic exchange. However, hormonal reactions are species-specific in nature to the existing factors. Perch and roach are less plastic to increase water temperature. Carp most favorably tolerates an increase in water temperature and a decrease in oxygen concentration.


2018 ◽  
Vol 69 (11) ◽  
pp. 1733 ◽  
Author(s):  
Christopher M. Bice ◽  
Brenton P. Zampatti ◽  
John R. Morrongiello

Understanding the influence of river hydrology and connectivity on the migration and recruitment of diadromous fishes is fundamental for species management and conservation. We investigated the downstream catadromous spawning migration of adult female congolli (Pseudaphritis urvillii) using acoustic telemetry, and subsequent juvenile recruitment, in the lower reaches of the River Murray, Australia, in 2009–2011. The years 2009 and 2010 were characterised by diminished freshwater flow, closure of tidal barrages, and disconnection of freshwater and estuarine habitats; however, a navigation lock was operated to facilitate downstream fish passage in 2010. In both years, >70% of individuals tagged upstream undertook downstream migrations, in association with day-of-the-year (June–July) and moonphase (full), and accumulated upstream of the tidal barrages. In 2009, fish were unable to pass the barrages and remained upstream, but in 2010, an estimated >15000 individuals passed through the navigation lock, including 40% of individuals tagged upstream. These transitioned rapidly (<24h) through the estuary and into the ocean. In association, abundances of upstream migrant juveniles in spring–summer 2010–2011 were up to 180 times greater than in spring–summer 2009–2010. Our study illustrates the potential impact of tidal barriers on migrations and population dynamics of catadromous fish, and the importance of understanding species-specific migration ecology.


2018 ◽  
Vol 631-632 ◽  
pp. 1201-1211 ◽  
Author(s):  
Karol Plesiński ◽  
Aneta Bylak ◽  
Artur Radecki-Pawlik ◽  
Tomasz Mikołajczyk ◽  
Krzysztof Kukuła
Keyword(s):  

2014 ◽  
Vol 36 (3) ◽  
pp. 368-385
Author(s):  
Jianhua Zhu ◽  
Qinmin Yang ◽  
Xiangguo Xu ◽  
Jiangang Lu

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256805
Author(s):  
Matthew L. Keefer ◽  
Michael A. Jepson ◽  
Tami S. Clabough ◽  
Christopher C. Caudill

Fishways have been widely used for upstream passage around human-built structures, but ‘success’ has varied dramatically. Evaluation of fishway success has typically been conducted at local scales using metrics such as fish passage efficiency and passage time, but evaluations are increasingly used in broader assessments of whether passage facilities meet population-specific conservation and management objectives. Over 15 years, we monitored passage effectiveness at eight dams on the Columbia and Snake rivers for 26,886 radio-tagged spring-summer and fall Chinook Salmon O. tshwaytscha, Sockeye Salmon O. nerka, and summer steelhead O. mykiss during their migrations to spawning sites. Almost all fish that entered dam tailraces eventually approached and entered fishways. Tailrace-to-forebay passage efficiency estimates at individual dams were consistently high, averaging 0.966 (SD = 0.035) across 245 run×year×dam combinations. These estimates are among the highest recorded for any migratory species, which we attribute to the scale of evaluation, salmonid life history traits (e.g., philopatry), and a sustained adaptive management approach to fishway design, maintenance, and improvement. Full-dam fish passage times were considerably more variable, with run×year×dam medians ranging from 5–65 h. Evaluation at larger scales provided evidence that fishways were biologically effective, e.g., we observed rapid migration rates (medians = 28–40 km/d) through river reaches with multiple dams and estimated fisheries-adjusted upstream migration survival of 67–69%. However, there were substantive uncertainties regarding effectiveness. Uncertainty about natal origins confounded estimation of population-specific survival and interpretation of apparent dam passage ‘failure’, while lack of post-migration reproductive data precluded analyses of delayed or cumulative effects of passing the impounded system on fish fitness. Although the technical fishways are effective for salmonids in the Columbia-Snake River system, other co-migrating species have lower passage rates, highlighting the need for species-specific design and evaluation wherever passage facilities impact fish management and conservation goals.


Author(s):  
Hadi Mohammed ◽  
Hoese Michel Tornyeviadzi ◽  
Razak Seidu

Abstract Identifying and controlling the drivers of change in the quality of water within distribution systems requires a comprehensive understanding of the individual and interactive effects of relevant factors. This article examines the impact of water temperature, pipe characteristics, and hydraulic conditions on the microbiological, physical, and chemical parameters of water quality in the distribution network using Bayesian Dirichlet process mixture of linear models and random forest method. The study was based on a database of the distribution network for the city of Ålesund in Norway and records of water quality data measured at seven different locations in the network from 2013 to 2019. In both modelling approaches applied, temperature was identified as the main factor that controls the microbiological stability of water in the network. From the minimum to the maximum values of temperature in the pipes (3.35 °C–11.14 °C respectively), the probabilities of occurrence of bacteria in water increased from 0.36 to 0.95. Temperature was also shown to be an important factor that affects the chemical parameters of water quality (pH, alkalinity and electrical conductivity). Among the input parameters included in this study, concentration of residual chlorine was shown to have the strongest growth-inhibiting effect on Total Bacteria in the pipes. The results further showed that changes in the hydraulic conditions in the pipes (residence time and flow) were among the most important determinants of the physical, chemical and microbiological quality of water in the distribution network. The random forest models assigned minimal importance to the pipe characteristics and conditions on changes in the water quality parameters. However, the Bayesian models revealed that these parameters have significant impact on the quality of water in the pipes.


2020 ◽  
Vol 73 (3) ◽  
pp. 202
Author(s):  
Ibrahim A. Abdulganiyyu ◽  
Marc-Antoine Sani ◽  
Frances Separovic ◽  
Heather Marco ◽  
Graham E. Jackson

Fruit flies are a widely distributed pest insect that pose a significant threat to food security. Flight is essential for the dispersal of the adult flies to find new food sources and ideal breeding spots. The supply of metabolic fuel to power the flight muscles of insects is regulated by adipokinetic hormones (AKHs). The fruit fly, Drosophila melanogaster, has the same AKH that is present in the blowfly, Phormia terraenovae; this AKH has the code-name Phote-HrTH. Binding of the AKH to the extra-cellular binding site of a G protein-coupled receptor causes its activation. In this paper, the structure of Phote-HrTH in sodium dodecyl sulfate (SDS) micelle solution was determined using NMR restrained molecular dynamics. The peptide was found to bind to the micelle and be fairly rigid, with an S2 order parameter of 0.96. The translated protein sequence of the AKH receptor from the fruit fly, D. melanogaster, Drome-AKHR, was used to construct two models of the receptor. It is proposed that these two models represent the active and inactive state of the receptor. The model based on the crystal structure of the β-2 adrenergic receptor was found to bind Phote-HrTH with a binding constant of −102kJmol−1, while the other model, based on the crystal structure of rhodopsin, did not bind the peptide. Under molecular dynamic simulation, in a palmitoyloleoylphosphatidylcholine (POPC) membrane, the receptor complex changed from an inactive to an active state. The identification and characterisation of the ligand binding site of Drome-AKHR provide novel information of ligand–receptor interaction, which could lead to the development of species-specific control substances to use discriminately against the fruit fly.


Sign in / Sign up

Export Citation Format

Share Document