Cell volumes of marine phytoplankton from globally distributed coastal data sets

2015 ◽  
Vol 162 ◽  
pp. 130-142 ◽  
Author(s):  
Paul J. Harrison ◽  
Adriana Zingone ◽  
Michael J. Mickelson ◽  
Sirpa Lehtinen ◽  
Nagappa Ramaiah ◽  
...  
2021 ◽  
Author(s):  
Scott Hotaling ◽  
Marek L. Borowiec ◽  
Luana S.F. Lins ◽  
Thomas Desvignes ◽  
Joanna L. Kelley

AbstractModern genetic data sets present unprecedented opportunities to understand the evolutionary origins of taxonomic groups comprising hundreds to thousands of species. When the timing of key events are known, it is also possible to investigate biogeographic history in the context of major phenomena (e.g., continental drift). In this study, we investigated the biogeographic history of the suborder Zoarcoidei, a globally distributed fish group that includes species inhabiting both poles and multiple taxa that produce antifreeze proteins to survive chronic subfreezing temperatures. We first generated a multi-locus, time-calibrated phylogeny for the group. We then used biogeographic modeling to reconstruct ancestral ranges across the tree and quantify the type and frequency of biogeographic events (e.g., founder, dispersal). With these results, we considered how the cooling of the Southern and Arctic Oceans, which reached their present-day subfreezing temperatures 10-15 million years ago (Mya) and 2-3 Mya, respectively, may have shaped the evolutionary history of Zoarcoidei, with an emphasis on the most speciose and widely distributed family, eelpouts (family Zoarcidae). Our phylogenetic results clarified standing issues in the Zoarcoidei taxonomy and showed that the group began to diversify in the Oligocene ∼31-32 Mya, with the center of origin for all families in north temperate waters. Within-area speciation was the most common biogeographic event in the group’s history (80% of all events) followed by dispersal (20%). Finally, we found mixed evidence for polar ocean cooling underpinning Zoarcoidei diversification, with support limited to eelpout speciation in the Southern Ocean over the last 10 million years.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 536
Author(s):  
Taner Z. Sen ◽  
Mario Caccamo ◽  
David Edwards ◽  
Hadi Quesneville

The International Wheat Information System (WheatIS) Expert Working Group (EWG) was initiated in 2012 under the Wheat Initiative with a broad range of contributing organizations. The mission of the WheatIS EWG was to create an informational infrastructure, establish data standards, and build a single portal that allows search, retrieval, and display of globally distributed wheat data sets that are indexed in standard data formats at servers around the world. The web portal at WheatIS.org was released publicly in 2015, and by 2020, it expanded to 8 geographically-distributed nodes and around 20 organizations under its umbrella.   In this paper, we present our experience, the challenges we faced, and the answer we brought for establishing an international research community to build an informational infrastructure. Our hope is that our experience with building wheatis.org will guide current and future research communities to facilitate institutional and international challenges to create global tools and resources to help their respective scientific communities.


2021 ◽  
Author(s):  
Greg Balco

<p>This abstract describes a project to make large data sets of cosmogenic-nuclide measurements useable for synoptic global analysis of paleoclimate, glacier change, and landscape change. It is based on the 'ICE-D' (Informal Cosmogenic-nuclide Exposure-age Database), a transparent-middle-layer infrastructure for compiling and storing cosmogenic-nuclide measurements and generating internally consistent exposure-age data. The prototype implementation of this project focuses on a global data set of exposure ages from glacial deposits that are, potentially, useful for synoptic analysis of glacier change and paleoclimate. The aim is to address a number of messy data-management and analysis problems associated with cosmogenic-nuclide data, thus making it possible to apply unbiased, automated quantitative analysis to the entire globally-distributed data set. The presentation will highlight (i) examples of error-tolerant hypothesis testing using this approach; (ii) means of quantifying the importance of the details of cosmogenic-nuclide production-rate calculations to global paleoclimate inferences, and (iii) likewise, approaches to understanding the importance of geomorphic processes and landform evolution to global paleoclimate inferences drawn from exposure-dated landforms.</p>


Author(s):  
John A. Hunt

Spectrum-imaging is a useful technique for comparing different processing methods on very large data sets which are identical for each method. This paper is concerned with comparing methods of electron energy-loss spectroscopy (EELS) quantitative analysis on the Al-Li system. The spectrum-image analyzed here was obtained from an Al-10at%Li foil aged to produce δ' precipitates that can span the foil thickness. Two 1024 channel EELS spectra offset in energy by 1 eV were recorded and stored at each pixel in the 80x80 spectrum-image (25 Mbytes). An energy range of 39-89eV (20 channels/eV) are represented. During processing the spectra are either subtracted to create an artifact corrected difference spectrum, or the energy offset is numerically removed and the spectra are added to create a normal spectrum. The spectrum-images are processed into 2D floating-point images using methods and software described in [1].


Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


Author(s):  
Douglas L. Dorset

The quantitative use of electron diffraction intensity data for the determination of crystal structures represents the pioneering achievement in the electron crystallography of organic molecules, an effort largely begun by B. K. Vainshtein and his co-workers. However, despite numerous representative structure analyses yielding results consistent with X-ray determination, this entire effort was viewed with considerable mistrust by many crystallographers. This was no doubt due to the rather high crystallographic R-factors reported for some structures and, more importantly, the failure to convince many skeptics that the measured intensity data were adequate for ab initio structure determinations.We have recently demonstrated the utility of these data sets for structure analyses by direct phase determination based on the probabilistic estimate of three- and four-phase structure invariant sums. Examples include the structure of diketopiperazine using Vainshtein's 3D data, a similar 3D analysis of the room temperature structure of thiourea, and a zonal determination of the urea structure, the latter also based on data collected by the Moscow group.


Author(s):  
W. Shain ◽  
H. Ancin ◽  
H.C. Craighead ◽  
M. Isaacson ◽  
L. Kam ◽  
...  

Neural protheses have potential to restore nervous system functions lost by trauma or disease. Nanofabrication extends this approach to implants for stimulating and recording from single or small groups of neurons in the spinal cord and brain; however, tissue compatibility is a major limitation to their practical application. We are using a cell culture method for quantitatively measuring cell attachment to surfaces designed for nanofabricated neural prostheses.Silicon wafer test surfaces composed of 50-μm bars separated by aliphatic regions were fabricated using methods similar to a procedure described by Kleinfeld et al. Test surfaces contained either a single or double positive charge/residue. Cyanine dyes (diIC18(3)) stained the background and cell membranes (Fig 1); however, identification of individual cells at higher densities was difficult (Fig 2). Nuclear staining with acriflavine allowed discrimination of individual cells and permitted automated counting of nuclei using 3-D data sets from the confocal microscope (Fig 3). For cell attachment assays, LRM5 5 astroglial cells and astrocytes in primary cell culture were plated at increasing cell densities on test substrates, incubated for 24 hr, fixed, stained, mounted on coverslips, and imaged with a 10x objective.


Author(s):  
Thomas W. Shattuck ◽  
James R. Anderson ◽  
Neil W. Tindale ◽  
Peter R. Buseck

Individual particle analysis involves the study of tens of thousands of particles using automated scanning electron microscopy and elemental analysis by energy-dispersive, x-ray emission spectroscopy (EDS). EDS produces large data sets that must be analyzed using multi-variate statistical techniques. A complete study uses cluster analysis, discriminant analysis, and factor or principal components analysis (PCA). The three techniques are used in the study of particles sampled during the FeLine cruise to the mid-Pacific ocean in the summer of 1990. The mid-Pacific aerosol provides information on long range particle transport, iron deposition, sea salt ageing, and halogen chemistry.Aerosol particle data sets suffer from a number of difficulties for pattern recognition using cluster analysis. There is a great disparity in the number of observations per cluster and the range of the variables in each cluster. The variables are not normally distributed, they are subject to considerable experimental error, and many values are zero, because of finite detection limits. Many of the clusters show considerable overlap, because of natural variability, agglomeration, and chemical reactivity.


Author(s):  
Jane K. Rosenthal ◽  
Dianne L. Atkins ◽  
William J. Marvin ◽  
Penny A. Krumm

To comprehend structural changes in cardiac myocytes accompanying adrenergic innervation, it is essential that a three dimensional analysis be performed. To date, biological studies which utilize stereological methods have been limited to cells in tissue and in organs. Our laboratory has utilized current stereological techniques for measuring absolute volumes of individual myocytes in primary culture. Cell volumes are calculated for two distinct groups of cells at 96 hours in culture: isolated myocytes and myocytes innervated with adrenergic neurons (Figure 1).Cardiac myocytes are cultured from the ventricular apices of newborn rats. Cells are plated directly onto tissue culture dishes with or without preplated explants from the paravertebral thoracolumbar sympathetic chain. On day four cultures are photographed and marked for one-to-one cell location. Following conventional fixation and embeddment in eponate-12, the cells are relocated and mounted for microtomy. The cells are completely sectioned at 120nm in their parallel orientation to the surface of the dish (Figure 2). Serial sections are collected on formvar coated slotted grids and are recorded in sequence.


Sign in / Sign up

Export Citation Format

Share Document