scholarly journals Casing setting depth and design of production well in water-dominated geothermal system with 330 °C reservoir temperature

2020 ◽  
Vol 6 ◽  
pp. 582-593
Author(s):  
B.T.H. Marbun ◽  
R.H. Ridwan ◽  
H.S. Nugraha ◽  
S.Z. Sinaga ◽  
B.A. Purbantanu
2014 ◽  
Vol 13 (3) ◽  
Author(s):  
Agustinus Denny Unggul Raharjo

<p class="BodyA">South Manokwari Regency is a new autonomous region in West Papua Province with abundant natural resources. As a new autonomous region South Manokwari Regency will be experiencing significant population growth. Population growth along with development and modernization will give burden to electricity demand. Alternatively, electricity can be provided with geothermal resources in Momiwaren District. Based on survey conducted by the government through the Geology Resources Centre in 2009, the reservoir temperature of the geothermal sources is 84<sup>o</sup>C with non volcanic geothermal system. Thus, the geothermal resources in South Manokwari Regency could be developed into binary cycle electric generator.</p>


2020 ◽  
Author(s):  
Kayla R Moore ◽  
Hartmut M. Holländer

Abstract Halite formations are attractive geothermal reservoirs due to their high heat conductivity, resulting in higher temperatures than other formations at similar depths. However, halite formations are highly reactive with undersaturated water. An understanding of the geochemical reactions that occur within halite-saturated formation waters can inform decision making regarding well construction, prevention of well clogging, formation dissolution, and thermal short-circuiting. Batch reaction and numerical 3-D flow and equilibrium reactive transport modeling were used to characterize the produced NaCl-brine in a well targeting a halite-saturated formation. The potential for inhibition of precipitation and dissolution using an MgCl2-brine and NaCl+MgCl2-brine were also investigated. Within the injection well for an NaCl-brine, with heating from 70 to 120°C, the solubility of halite decreases resulting in the potential dissolution of 0.479 mol kg-1 halite at the formation. Cooling from 120 to 100°C in the production well results in precipitation of 0.196 mol kg-1 halite as well as anhydrite. Introduction of MgCl2, resulting in a common Cl- ion, into the heat exchange brine resulted in a decreased potential for dissolution by 0.290 mol kg-1 halite within the formation, as well as decreased precipitation within the production well, compared to the NaCl-brine. The halite solubility was altered by changes in pressure up to 0.045 mol kg-1. This indicates that designing and monitoring the composition of heat exchange fluids in highly saline environments is an important component in geothermal project design.


2018 ◽  
Vol 12 (4) ◽  
pp. 151
Author(s):  
Jeres Rorym Cherdasa ◽  
Ken Prabowo ◽  
Tutuka Ariadji ◽  
Benyamin Sapiie ◽  
Zuher Syihab

East Natuna is well known for its humongous natural gas reserves with a high CO2 content. The high quantity of carbon dioxide requires implementation cutting-edge capture and storage process in its development plan which comes at a high cost. In order to increase the economic feasibility of the area, the impurities are proposed to be utilized CO2 as working fluid further to generate electricity through Enhanced Geothermal System (EGS). Carbon dioxide has been proven to be a better fluid for EGS as it could reach super critical state in much lower pressure and temperature compared to brine water. Sokang Trough Area in East Natuna Basin was selected as a candidate for pilot project due to its favorable geological condition.Carbon Capture Storage and Utilization (CCSU) especially EGS in sedimentary basin requires a suitable reservoir that fulfills several geological and engineering parameters. Firstly, it should porous enough to store fluid and permeable to flow it. The storage should also be deep enough to retain temperature above 87.98°F and pressure above 1071 psi in order to keep the CO2 in supercritical phase. Even further, EGS requires a minimum reservoir temperature of ±300°F to be technologically viable. In order to avoid vertical unintended migration, the reservoir should have high water saturation instead of gas saturation. Lastly, the seal should be able to confine the injected CO2 column within the storage.Formation evaluation workflow adapted for CCSU was employed in this study. Porosity, water saturation and permeability was estimated through deterministic approach. Formation pressure was calculated using Eaton’s equation. Reservoir temperature was estimated from available well testing data. Storage capacity was estimated for the whole structure with several cases. Considering all those parameters, several suitable reservoirs were able to be delineated in the CCS-1 well that is located within the East Natuna area.


2018 ◽  
Vol 35 (2) ◽  
pp. 116-141 ◽  
Author(s):  
Erika Almirudis ◽  
Edgar R. Santoyo-Gutiérrez ◽  
Mirna Guevara ◽  
Francisco Paz-Moreno ◽  
Enrique Portugal

A promissory low-to-medium temperature geothermal system located in Sonora (Mexico) has been studied. In the present work, a detailed geochemical survey was carried out to understand the hydrogeochemical signatures of hot spring waters. A field work campaign was conducted for collecting water samples from twelve hot springs placed in four major zones (NW, NE, C, and S). The collected samples were analysed by chemical and isotopic methods for determining their chemical (major and trace elements) and isotopic (18O/16O and D/H) compositions. Using geochemometric analyses of the fluid composition and fractionation, depletion and enrichment processes exhibited by major and trace elements were analysed. Hydrogeochemical classification was used to indicate the presence of sodium-sulphate (Na-SO4) waters in the North (NW and NE) and South hydrothermal zones; whereas calcium-magnesium-bicarbonate (Ca-Mg-HCO3) waters were identified for the Central zone. Some hot spring waters located in the NE zone were also typified as sodium-bicarbonate (Na-HCO3). In relation to the isotopic signatures of 18O/16O and D/H, four water samples from NE and C zones lie near to the global meteoric water line; whereas the remaining eight samples showed a shift for both oxygen and deuterium isotopes. A mixing line with a small shift of δ18O was identified and used as a proxy to discriminate waters with different isotopic signatures. After applying a geochemometric outliers detection/rejection and an iterative ANOVA statistical test, the mean temperature inferred from the most reliable solute geothermometers was 149±40 °C, which suggests to be considered as the minimum value of the reservoir temperature. As most of the hot spring waters fall outside of the full equilibrium curve, the original reservoir conditions were corrected by using a mixing conductive model, which predicted a deep equilibrium temperature of 210±11 °C. As this temperature is considerably higher than the mean temperature inferred from the geothermometers, it was suggested as an optimistic maximum reservoir temperature of the Sonora geothermal system. Using 150 °C and 200 °C as rounded-off reservoir temperatures (or min-max estimates), geochemical equilibria modelling based on fluid-mineral stability diagrams was carried out. An equilibrium process among local hydrothermal waters and albite-potassium feldespar and muscovite-prehnite-laumontite mineral assemblages was found. These minerals were proposed as representative mineral assemblages of low-grade metamorphism, which seems to indicate that the geothermal fluid equilibria were probably reached within the intermediate to acidic volcanic rocks from the Tarahumara Formation.


Geothermics ◽  
2022 ◽  
Vol 99 ◽  
pp. 102295
Author(s):  
Xin Wang ◽  
Zujiang Luo ◽  
Chenghua Xu ◽  
Yaxin Lv ◽  
Lei Cheng ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kayla R. Moore ◽  
Hartmut M. Holländer

AbstractHalite formations are attractive geothermal reservoirs due to their high heat conductivity, resulting in higher temperatures than other formations at similar depths. However, halite formations are highly reactive with undersaturated water. An understanding of the geochemical reactions that occur within halite-saturated formation waters can inform decision making regarding well construction, prevention of well clogging, formation dissolution, and thermal short-circuiting. Batch reaction and numerical 3-D flow and equilibrium reactive transport modeling were used to characterize the produced NaCl-brine in a well targeting a halite-saturated formation. The potential for inhibition of precipitation and dissolution using an MgCl2-brine and NaCl + MgCl2-brine were also investigated. Within the injection well, heating of an NaCl-brine from 70 to 120 °C caused the solubility of halite to decrease, resulting in the potential dissolution of 0.479 mol kg−1 halite at the formation. Conversely, cooling from 120 to 100 °C in the production well resulted in potential precipitation of 0.196 mol kg−1 halite. Concurrent precipitation of anhydrite is also expected. Introduction of MgCl2  into the heat exchange brine, which has a common Cl− ion, resulted in a decreased potential for dissolution by 0.290 mol kg−1 halite within the formation, as well as decreased precipitation within the production well, compared to the NaCl-brine. The halite solubility was altered by changes in pressure up to 0.045 mol kg−1. This indicates that designing and monitoring the composition of heat exchange fluids in highly saline environments is an important component in geothermal project design.


2021 ◽  
Author(s):  
Monia Procesi ◽  
L. Marini ◽  
D. Cinti ◽  
A. Sciarra ◽  
P. Basile ◽  
...  

Abstract An evaluation of the feasible development of geothermal energy in Mozambique is proposed based on some thermal springs geochemical characterization in the Tete region. Chemical and isotopic data suggest that the springs have a meteoric origin and do not show connection with any active magmatic system. The proposed circulation model suggests high depths infiltration of meteoric waters along faults and fractures in a system characterised by discrete permeability and reservoir temperature between 90 and 120°C. These results, jointly with low salinity fluids and corrosive components absence suggest that the geothermal system may be conveniently exploited for direct and indirect uses.


2019 ◽  
Vol 80 ◽  
pp. 01006
Author(s):  
Abdelkader Ait-Ouali ◽  
Salima Ouali ◽  
MM Hadjiat ◽  
Khaled Imessad

The study area is one of the important geothermal provinces in south Algeria. It is characterized by a hot arid climate with intense dryness and very high evaporation rates. The Albian geothermal system is exploited by the wells mainly for domestic and agricultural purposes. The sandstone Continental Intercalary (CI) formation constitutes the reservoir for the Albian aquifer, covering an area of 600,000 km2. This reservoir is covered by calcareous formations which yield the chemical characteristics of highly mineralized Na-Cl type representing the deep thermal waters and Ca-SO4 type determined the presence of evaporate lithology . For a better understanding of geothermal reservoir characteristic, a multidisciplinary approach was adopted, including hydrogeochemistry and geothermometry. More than fifty samples collected from wells recently in 2017 with a temperature average between 38 and 60° C and conductivities range from 2010 to 3460 μS/cm. Geochemical analysis of those thermal waters exhibits a certain degree of salinity with sodium-chloride type waters domination. The maximal geothermal reservoir temperature estimated using geothermometry is about 120°C.


Sign in / Sign up

Export Citation Format

Share Document