scholarly journals Effects of planting soybean in summer fallow on wheat grain yield, total N and Zn in grain and available N and Zn in soil on the Loess Plateau of China

2014 ◽  
Vol 58 ◽  
pp. 63-72 ◽  
Author(s):  
Ning Yang ◽  
Zhaohui Wang ◽  
Yajun Gao ◽  
Hubing Zhao ◽  
Keyi Li ◽  
...  
2015 ◽  
Vol 107 (6) ◽  
pp. 2059-2068 ◽  
Author(s):  
Yanlong Chen ◽  
Ting Liu ◽  
Xiaohong Tian ◽  
Xiaofeng Wang ◽  
Huilin Chen ◽  
...  

Pedosphere ◽  
2007 ◽  
Vol 17 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Ming-De HAO ◽  
Jun FAN ◽  
Quan-Jiu WANG ◽  
Ting-Hui DANG ◽  
Sheng-Li GUO ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1094
Author(s):  
Kai Yue ◽  
Lingling Li ◽  
Junhong Xie ◽  
Setor Kwami Fudjoe ◽  
Renzhi Zhang ◽  
...  

Nitrogen (N) is the most limiting nutrient for maize, and appropriate N fertilization can promote maize growth and yield. The effect of N fertilizer rates and timings on morphology, antioxidant enzymes, and grain yield of maize (Zea mays L.) in the Loess Plateau of China was evaluated. The four N levels, i.e., 0 (N0), 100 (N1), 200 (N2), and 300 (N3) kg ha−1, were applied at two timings (T1, one-third N at sowing and two-thirds at the six-leaf stage of maize; T2, one-third applied at sowing, six-leaf stage, and eleven-leaf stage of maize). The results show that N2 and N3 significantly increased the plant height, stem and leaf dry weight, and leaf area index of maize compared with a non-N-fertilized control (N0). The net photosynthetic rate, transpiration rate, stomatal conductance, and leaf chlorophyll contents were lower, while the intercellular carbon dioxide concentration was higher for non-fertilized plants compared to fertilized plants. The activities of peroxidase (POD) and superoxide dismutase (SOD) increased with N rate, but the difference between 200 and 300 kg ha−1 was not significant; further, the isozyme bands of POD and SOD also changed with their activities. Compared with a non-N-fertilized control, N2 and N3 significantly increased grain yield by 2.76- and 3.11-fold in 2018, 2.74- and 2.80-fold in 2019, and 2.71- and 2.89-fold in 2020, and there was no significant difference between N2 and N3. N application timing only affected yield in 2018. In conclusion, 200 kg N ha−1 application increased yield through optimizing the antioxidant enzyme system, increasing photosynthetic capacity, and promoting dry matter accumulation. Further research is necessary to evaluate the response of more cultivars under more seasons to validate the results obtained.


Solid Earth ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 281-290 ◽  
Author(s):  
Linhua Wang ◽  
Bo Ma ◽  
Faqi Wu

Abstract. Soil and water losses in agriculture are major environmental problems worldwide, especially on the Loess Plateau, China. Summer fallow management may help to control soil erosion and conserve water. This study investigated the effects of wheat stubble on runoff, infiltration, and soil loss in laboratory plots under simulated rainfall. The treatments comprised wheat stubble cover (WS) and traditional plowing (TP) in runoff plots (4.0 m  ×  1.0 m) with three slope gradients (5, 10, and 15°) under simulated rainfall at 80 mm h−1 for 1 h. The runoff volume from WS plots was significantly less than that from TP. The runoff reduction with WS ranged from 91.92 to 92.83 % compared with TP. The runoff rates varied with the runoff volume in the same manner. The infiltration amount was higher with WS (94.8–96.2 % of rainwater infiltrated) than TP (35.4–57.1 %). The sediment concentration was significantly lower with WS than TP. Compared with TP (304.31–731.23 g m−2), the sediment losses were reduced dramatically in WS (2.41–3.78 g m−2) and the sediment loss slightly increased with slope; however, it was greatly increased as slope increased in TP. These results revealed that the stubble cover was the main factor reducing runoff and sediment losses and improving infiltration and that stubble showed a great potential to control erosion and conserve soil and water resources during the summer fallow period in the Loess Plateau region.


Sign in / Sign up

Export Citation Format

Share Document