scholarly journals Battery-free radio frequency wireless sensor for bacteria based on their degradation of gelatin-fatty acid composite films

2021 ◽  
Vol 381 ◽  
pp. 138275
Author(s):  
Palraj Kalimuthu ◽  
Juan F. Gonzalez-Martinez ◽  
Dainius Jakubauskas ◽  
Marité Cárdenas ◽  
Tautgirdas Ruzgas ◽  
...  
2020 ◽  
Vol 92 (19) ◽  
pp. 13110-13117
Author(s):  
Palraj Kalimuthu ◽  
Juan F. Gonzalez-Martinez ◽  
Tautgirdas Ruzgas ◽  
Javier Sotres

Author(s):  
Pankaj Kumar Mishra ◽  
Pratik ◽  
Manish Kumar

Wireless Sensor Network (WSN) has an enormous prospective in hazardous areas such as underground coal mines. However, there is a need to ensure safety while installing WSN in underground coal mine as it is hazardous in nature and WSN radiates Radio Frequency (RF) signals which can be an eminent source of ignition. Henceforth when the underground coal mines are equipped with WSN there is a need to set the threshold limits of different physical parameters in order to eradicate such hazards for enabling safety. Therefore, in the present chapter, attempts have been made to assess the required safety for WSN while installing in underground coal mines. In addition, various types of hazards associated with underground coal mines and their consequences are elaborated in details with a glimpse to mitigate them with the use of WSN.


2018 ◽  
Vol 45 (8) ◽  
pp. 659 ◽  
Author(s):  
C. R. Krull ◽  
L. F. McMillan ◽  
R. M. Fewster ◽  
R. van der Ree ◽  
R. Pech ◽  
...  

Context Wireless sensor networks (WSNs) are revolutionising areas of animal behaviour research and are advantageous based on their ability to be deployed remotely and unobtrusively, for long time periods in inaccessible areas. Aims We aimed to determine the feasibility of using a WSN to track detailed movement paths of small animals, e.g. rats (Rattus spp.) 100–400g, too small for current GPS technology, by calibrating active Radio Frequency Identification (RFID) tags and loggers using Radio Frequency Signal Strength Indicator (RSSI) as a proxy for distance. Active RFIDs are also called Wireless Identification (WID) tags. Methods Calibration tests were conducted using a grid of loggers (n=16) spaced at 45-m intervals in clear line-of-sight conditions. WID tags (n=16) were placed between the loggers at 45-m intervals. Eight ‘walks’ were also conducted through the grid using a single WID tag. This involved attaching the tag to a small bottle of water (to simulate the body of an animal), towed around the grid using a 1-m long tow line attached to a volunteer walker. The volunteer also held a GPS device that logged their track. Models were constructed to test the effects of distance, tag movement and individual differences in loggers and tags on the reliability of movement data. Key results Loggers were most successful at detecting tags at distances <50m. However, there was a significant difference in the detection probabilities of individual loggers and also the transmission performance of individual tags. Static tags were less likely to be detected than the mobile tag; and although RSSI was somewhat related to distance, the reliability of this parameter was highly variable. Implications We recommend caution in the future use of current radio frequency ID tags in wireless sensor networks to track the movement of small animals, and in the use of RSSI as an indicator of individual distance values, as extensive in situ calibration is required. ‘Off the shelf’ devices may vary in performance, rendering data unreliable. We emphasise the importance of calibrating all equipment in animal tracking studies to reduce data uncertainty and error.


2015 ◽  
Vol 738-739 ◽  
pp. 107-110
Author(s):  
Hui Lin

A Wireless Sensor Network is composed of sensor nodes powered by batteries. Thus, power consumption is the major challenge. In spite of so many research works discussing this issue from the aspects of network optimization and system design, so far not so many focus on optimizing power consumption of the Radio Frequency device, which consumes most of the energy. This paper describes the digital features of the Radio Frequency device used to optimize current consumption, and presents a practical approach to measure current consumption in static and dynamic scenarios in details, by which we evaluates the power saving effect. The results demonstrated that according to cycle times and application characteristics choosing appropriate features can prolong the lifetime of wireless sensor nodes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Touseef Habib ◽  
Nutan Patil ◽  
Xiaofei Zhao ◽  
Evan Prehn ◽  
Muhammad Anas ◽  
...  

Abstract Here we report for the first time that Ti3C2Tx/polymer composite films rapidly heat when exposed to low-power radio frequency fields. Ti3C2Tx MXenes possess a high dielectric loss tangent, which is correlated with this rapid heating under electromagnetic fields. Thermal imaging confirms that these structures are capable of extraordinary heating rates (as high as 303 K/s) that are frequency- and concentration-dependent. At high loading (and high conductivity), Ti3C2Tx MXene composites do not heat under RF fields due to reflection of electromagnetic waves, whereas composites with low conductivity do not heat due to the lack of an electrical percolating network. Composites with an intermediate loading and a conductivity between 10–1000 S m−1 rapidly generate heat under RF fields. This finding unlocks a new property of Ti3C2Tx MXenes and a new material for potential RF-based applications.


2020 ◽  
Vol 38 ◽  
pp. 100773
Author(s):  
Gleice Vasconcelos da Silva Pereira ◽  
Glauce Vasconcelos da Silva Pereira ◽  
Eleda Maria Paixão Xavier Neves ◽  
José de Arimateia Rodrigues do Rego ◽  
Davi do Socorro Barros Brasil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document