Revisiting the temperature dependence in material properties and performance of thermoelectric materials

Energy ◽  
2017 ◽  
Vol 124 ◽  
pp. 249-257 ◽  
Author(s):  
Chengjian Ju ◽  
Guansuo Dui ◽  
Helen Hao Zheng ◽  
Libiao Xin
Author(s):  
Shangqing Qu ◽  
Jing Zhao ◽  
Zimin Jiang ◽  
Dequan Jiang ◽  
Yonggang Wang

The pavonite homologous series assembled from two basic modules is a potential n-type thermoelectric material.


2014 ◽  
Vol 26 (17) ◽  
pp. 5852-5856
Author(s):  
Yongzhong Zhang ◽  
Yonghui Han ◽  
Shaoping Chen ◽  
Qingsen Meng

2009 ◽  
Vol 374 (1-2) ◽  
pp. 96-105 ◽  
Author(s):  
Chandra Vemavarapu ◽  
Madhu Surapaneni ◽  
Munir Hussain ◽  
Sherif Badawy

Author(s):  
Alessandro Valgimigli ◽  
Enrico Bertocchi ◽  
Alberto Lazzarini ◽  
Luca D’agostino ◽  
Luca Splendi

The strong competition of the automotive market brings the industries to look continuously for more challenging comfort and performance standards. These requirements often contrast with the need for weight reduction related to the restrictive emissions limits. In this scenario, the investments aimed at increasing the structure efficiency (stiffness-to-weight ratio) become fundamental. The objective of this work is to propose a methodology that allows to identify the most important chassis areas in terms of efficiency: the design and research efforts could then be focused on the real determinant parts. This is done through a sensitivity process that works on frame subsystems and then on each component, first varying the material properties and then the thickness (and so the mass). The designing loadcases considered are the torsional stiffness, bending stiffness, modal analysis and frequency response analysis. The results show which are the most important subsystems and components that affects the chassis efficiency and that will have to be re-designed in order to improve the current architecture.


Author(s):  
Will Judge ◽  
Georges Kipouros

The production of aluminum alloys through powder metallurgy (PM) processes allows for the manufacture of net- or near-net-shape components in a cost-effective and sustainable manner. The high reactivity of aluminum metal, however, complicates PM processing, and special attention must be given to certain steps during production, particularly sintering. PM processing conditions strongly affect the structure and porosity of aluminum PM alloys, which ultimately determine their material properties and performance. In this article, the fundamental aspects of the commercial production of aluminum PM alloys are presented, along with the effects of production conditions on the structure and porosity of aluminum PM alloys. The properties and performance of aluminum PM alloys are then analyzed and interpreted with respect to their structure and porosity.


1972 ◽  
Vol 39 (3) ◽  
pp. 723-726 ◽  
Author(s):  
U. Olsson

The influence of the temperature-dependence of the material properties on the free vibrations of transiently heated structures is investigated. Analytical solutions are given for linear, exponential, and harmonic temperature variations when the material damping parameter, Poisson’s ratio, and Young’s modulus depend on the temperature.


1992 ◽  
Vol 03 (02) ◽  
pp. 171-199 ◽  
Author(s):  
JEFF CONGER ◽  
ANDRZEJ PECZALSKI ◽  
MICHAEL S. SHUR

Direct-Coupled FET Logic (DCFL) is an important logic family for LSI GaAs FET circuits because of its simple structure and good speed/power performance. Since it is especially sensitive to temperature shifts of performance, accurate temperature modeling is critical for design of DCFL circuits. Using a version of SPICE modified to include FET temperature dependence, the performance of DCFL is simulated over temperature and compared with measured results. In addition, an improved version of DCFL known as E-E Logic (Enhancement-Enhancement Logic) is modeled over temperature. The performance of E-E Logic is compared to DCFL with depletion-mode FET and saturated resistor loads over temperature. E-E Logic is found to offer improved yield, power dissipation and performance control compared to conventional DCFL.


2021 ◽  
Vol 315 ◽  
pp. 31-36
Author(s):  
Xue Ying Chen ◽  
Li Hua Zhan ◽  
Hai Long Liao ◽  
Yuan Gao

Creep age forming technology (CAF) has been widely used to manufacture large integral panels in aerospace industry. However, due to the bending of the sheet metal, the stress states usually changes along the thickness direction during the CAF process, resulting in a complex distribution of stress. In addition, deformation texture is introduced when the sheet has a large pre-deformation, which also greatly affects the shape and performance of the component after aging. In this paper, the anisotropy in compression creep-ageing behavior of 2219-T3 aluminum alloy was studied. It was found that there is obvious anisotropy of compressive creep strains, the creep strain is the largest when the applied stress is along the rolling direction (RD) and the smallest when the applied stress is along the transverse direction (TD). The results of room temperature (25 ° C) and high temperature (165 ° C) tensile property test shows that the as-received material properties has obvious in-planar anisotropy, and the yield strength in the RD is the largest, but the 45° and TD are basically the same. Interestingly, the anisotropy of yield strength after SFA and compressive stress creep aging has basically disappeared, that is,the material properties tended to be isotropic after ageing.


Sign in / Sign up

Export Citation Format

Share Document