Powder Metallurgy Aluminum Alloys: Structure and Porosity

Author(s):  
Will Judge ◽  
Georges Kipouros

The production of aluminum alloys through powder metallurgy (PM) processes allows for the manufacture of net- or near-net-shape components in a cost-effective and sustainable manner. The high reactivity of aluminum metal, however, complicates PM processing, and special attention must be given to certain steps during production, particularly sintering. PM processing conditions strongly affect the structure and porosity of aluminum PM alloys, which ultimately determine their material properties and performance. In this article, the fundamental aspects of the commercial production of aluminum PM alloys are presented, along with the effects of production conditions on the structure and porosity of aluminum PM alloys. The properties and performance of aluminum PM alloys are then analyzed and interpreted with respect to their structure and porosity.

EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Rebecca L. Wente ◽  
Samuel F. Hutton ◽  
Scott Adkins ◽  
William Turechek ◽  
Joseph E. Funderburk

Authors describe performance of Tospovirus-resistant tomato varieties under commercial production settings in Dade County, FL. Virus resistance has become important for this area since the emergence of two new tomato-infecting tospoviruses. Knowledge of availability and performance of resistant varieties will help growers who are looking for alternative varieties.


Author(s):  
J. Alias

Much research on magnesium (Mg) emphasises creating good corrosion resistance of magnesium, due to its high reactivity in most environments. In this study, powder metallurgy (PM) technique is used to produce Mg samples with a variation of aluminium (Al) composition. The effect of aluminium composition on the microstructure development, including the phase analysis was characterised by optical microscope (OM), scanning electron microscopy (SEM) and x-ray diffraction (XRD). The mechanical property of Mg sample was performed through Vickers microhardness. The results showed that the addition of aluminium in the synthesised Mg sample formed distribution of Al-rich phases of Mg17Al12, with 50 wt.% of aluminium content in the Mg sample exhibited larger fraction and distribution of Al-rich phases as compared to the 20 wt.% and 10 wt.% of aluminium content. The microhardness values were also increased at 20 wt.% and 50 wt.% of aluminium content, comparable to the standard microhardness value of the annealed Mg. A similar trend in corrosion resistance of the Mg immersed in 3.5 wt.% NaCl solution was observed. The corrosion behaviour was evaluated based on potentiodynamic polarisation behaviour. The corrosion current density, icorr, is observed to decrease with the increase of Al composition in the Mg sample, corresponding to the increase in corrosion resistance due to the formation of aluminium oxide layer on the Al-rich surface that acted as the corrosion barrier. Overall, the inclusion of aluminium in this study demonstrates the promising development of high corrosion resistant Mg alloys.


Author(s):  
Iman Mehdipour ◽  
Gabriel Falzone ◽  
Dale Prentice ◽  
Narayanan Neithalath ◽  
Dante Simonetti ◽  
...  

Optimizing the spatial distribution of contacting gas and the gas processing conditions enhances CO2 mineralization reactions and material properties of carbonate-cementitious monoliths.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1437
Author(s):  
Jing Yi Ong ◽  
Andrew Pike ◽  
Ling Ling Tan

The presence of mycotoxins in foodstuffs and feedstuffs is a serious concern for human health. The detection of mycotoxins is therefore necessary as a preventive action to avoid the harmful contamination of foodstuffs and animal feed. In comparison with the considerable expense of treating contaminated foodstuffs, early detection is a cost-effective way to ensure food safety. The high affinity of bio-recognition molecules to mycotoxins has led to the development of affinity columns for sample pre-treatment and the development of biosensors for the quantitative analysis of mycotoxins. Aptamers are a very attractive class of biological receptors that are currently in great demand for the development of new biosensors. In this review, the improvement in the materials and methodology, and the working principles and performance of both conventional and recently developed methods are discussed. The key features and applications of the fundamental recognition elements, such as antibodies and aptamers are addressed. Recent advances in aptasensors that are based on different electrochemical (EC) transducers are reviewed in detail, especially from the perspective of the diagnostic mechanism; in addition, a brief introduction of some commercially available mycotoxin detection kits is provided.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1342
Author(s):  
Borja Nogales ◽  
Miguel Silva ◽  
Ivan Vidal ◽  
Miguel Luís ◽  
Francisco Valera ◽  
...  

5G communications have become an enabler for the creation of new and more complex networking scenarios, bringing together different vertical ecosystems. Such behavior has been fostered by the network function virtualization (NFV) concept, where the orchestration and virtualization capabilities allow the possibility of dynamically supplying network resources according to its needs. Nevertheless, the integration and performance of heterogeneous network environments, each one supported by a different provider, and with specific characteristics and requirements, in a single NFV framework is not straightforward. In this work we propose an NFV-based framework capable of supporting the flexible, cost-effective deployment of vertical services, through the integration of two distinguished mobile environments and their networks: small sized unmanned aerial vehicles (SUAVs), supporting a flying ad hoc network (FANET) and vehicles, promoting a vehicular ad hoc network (VANET). In this context, a use case involving the public safety vertical will be used as an illustrative example to showcase the potential of this framework. This work also includes the technical implementation details of the framework proposed, allowing to analyse and discuss the delays on the network services deployment process. The results show that the deployment times can be significantly reduced through a distributed VNF configuration function based on the publish–subscribe model.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Jiaheng Li ◽  
Yingbo Zhang ◽  
Xinyu Cao ◽  
Qi Zeng ◽  
Ye Zhuang ◽  
...  

Abstract Aluminum alloys are attractive for a number of applications due to their high specific strength, and developing new compositions is a major goal in the structural materials community. Here, we investigate the Al-Zn-Mg-Cu alloy system (7xxx series) by machine learning-based composition and process optimization. The discovered optimized alloy is compositionally lean with a high ultimate tensile strength of 952 MPa and 6.3% elongation following a cost-effective processing route. We find that the Al8Cu4Y phase in wrought 7xxx-T6 alloys exists in the form of a nanoscale network structure along sub-grain boundaries besides the common irregular-shaped particles. Our study demonstrates the feasibility of using machine learning to search for 7xxx alloys with good mechanical performance.


Author(s):  
Maia R. Bageant ◽  
David E. Hardt

Microfluidic technologies hold a great deal of promise in advancing the medical field, but transitioning them from research to commercial production has proven problematic. We propose precision hot embossing as a process to produce high volumes of devices with low capital cost and a high degree of flexibility. Hot embossing has not been widely applied to precision forming of hard polymers at viable production rates. To this end we have developed experimental equipment capable of maintaining the necessary precision in forming parameters while minimizing cycle time. In addition, since equipment precision alone does not guarantee consistent product quality, our work also focuses on real-time sensing and diagnosis of the process. This paper covers both the basic details for a novel embossing machine, and the utilization of the force and displacement data acquired during the embossing cycle to diagnose the state of the material and process. The precision necessary in both the forming machine and the instrumentation will be covered in detail. It will be shown that variation in the material properties (e.g. thickness, glass transition temperature) as well as the degree of bulk deformation of the substrate can be detected from these measurements. If these data are correlated with subsequent downstream functional tests, a total measure of quality may be determined and used to apply closed-loop cycle-to-cycle control to the entire process. By incorporating automation and specialized precision equipment into a tabletop “microfactory” setting, we aim to demonstrate a high degree of process control and disturbance rejection for the process of hot embossing as applied at the micron scale.


2016 ◽  
Vol 704 ◽  
pp. 75-84 ◽  
Author(s):  
Fei Yang ◽  
Brian Gabbitas ◽  
Ajit Pal Singh ◽  
Stella Raynova ◽  
Hui Yang Lu ◽  
...  

Blended Elemental Powder Metallurgy (BE-PM) is a very attractive method for producing titanium alloys, which can be near-net shape formed with compositional freedom. However, a minimization of oxygen pick-up during processing into manufactured parts is a big challenge for powder metallurgy of titanium alloys. In this paper, different approaches for preparing titanium alloy parts by powder compact extrusion with 0.05-0.1wt.% of oxygen pick-up during manufacturing are discussed. The starting materials were a powder mixture of HDH titanium powder, other elemental powders and a master alloy powder. Different titanium alloys and composites, such as Ti-6Al-4V, Ti-4Al-4Sn-4Mo-0.5Si, Ti-5Al-5V-5Mo-3Cr, and Ti-5Al-5V-5Mo-3Cr-5vol%TiB, with different profiles such as round and rectangular bars, a wedge profile, wire and tubes have been successfully manufactured on a laboratory and pilot-plant scale. Furthermore, a possible route for scaling up the titanium processing capabilities in the University of Waikato has also been discussed.


Sign in / Sign up

Export Citation Format

Share Document