Cr(VI) removal from a synthetic solution using a novel carbonaceous material prepared from oily sludge of tank bottom

2019 ◽  
Vol 249 ◽  
pp. 843-850 ◽  
Author(s):  
Huifen Yang ◽  
Zhaofeng Li ◽  
Peng Fu ◽  
Ge Zhang
ACS Omega ◽  
2020 ◽  
Vol 5 (21) ◽  
pp. 12259-12269 ◽  
Author(s):  
Hong-Shuo Chen ◽  
Qi-Ming Zhang ◽  
Zi-Jian Yang ◽  
Yang-Sheng Liu

2013 ◽  
Vol 742 ◽  
pp. 262-267
Author(s):  
Lei Zhang ◽  
Hui Ling Liu

The sediments in all kinds of containers in oily field ground processing system were called tank bottom oily sludge. In this paper, the characteristics of sludge were studied. The colloid and asphaltene can increase strength of the oily-water emulsion film which can lead to seriously oily emulsion. In view of this, the process of conditioning-ultrasonic demulsification-centrifugal separation treating tank bottom oily sludge was designed by studying the sludges physical and chemical characteristics. The process parameters were selected. The conditioning were that the dose of detergent was 600 ~ 800 mg/L; The ultrasound processing was that the temperature was 60°C, the ultrasound power was 12Kw and the running time was 25min; The centrifugal separation was that the temperature was 60°C, the dosing flocculant was 600mg/L and centrifuge rotating was 2200r/min. The oily containing in the sludge of centrifugal exports was less than 2% by using this process at the optimal parameters.


Author(s):  
Thomas R. McKee ◽  
Peter R. Buseck

Sediments commonly contain organic material which appears as refractory carbonaceous material in metamorphosed sedimentary rocks. Grew and others have shown that relative carbon content, crystallite size, X-ray crystallinity and development of well-ordered graphite crystal structure of the carbonaceous material increases with increasing metamorphic grade. The graphitization process is irreversible and appears to be continous from the amorphous to the completely graphitized stage. The most dramatic chemical and crystallographic changes take place within the chlorite metamorphic zone.The detailed X-ray investigation of crystallite size and crystalline ordering is complex and can best be investigated by other means such as high resolution transmission electron microscopy (HRTEM). The natural graphitization series is similar to that for heat-treated commercial carbon blacks, which have been successfully studied by HRTEM (Ban and others).


Author(s):  
G.K.W. Balkau ◽  
E. Bez ◽  
J.L. Farrant

The earliest account of the contamination of electron microscope specimens by the deposition of carbonaceous material during electron irradiation was published in 1947 by Watson who was then working in Canada. It was soon established that this carbonaceous material is formed from organic vapours, and it is now recognized that the principal source is the oil-sealed rotary pumps which provide the backing vacuum. It has been shown that the organic vapours consist of low molecular weight fragments of oil molecules which have been degraded at hot spots produced by friction between the vanes and the surfaces on which they slide. As satisfactory oil-free pumps are unavailable, it is standard electron microscope practice to reduce the partial pressure of organic vapours in the microscope in the vicinity of the specimen by using liquid-nitrogen cooled anti-contamination devices. Traps of this type are sufficient to reduce the contamination rate to about 0.1 Å per min, which is tolerable for many investigations.


Author(s):  
Jun Jiao

HREM studies of the carbonaceous material deposited on the cathode of a Huffman-Krätschmer arc reactor have shown a rich variety of multiple-walled nano-clusters of different shapes and forms. The preparation of the samples, as well as the variety of cluster shapes, including triangular, rhombohedral and pentagonal projections, are described elsewhere.The close registry imposed on the nanotubes, focuses attention on the cluster growth mechanism. The strict parallelism in the graphitic separation of the tube walls is maintained through changes of form and size, often leading to 180° turns, and accommodating neighboring clusters and defects. Iijima et. al. have proposed a growth scheme in terms of pentagonal and heptagonal defects and their combinations in a hexagonal graphitic matrix, the first bending the surface inward, and the second outward. We report here HREM observations that support Iijima’s suggestions, and add some new features that refine the interpretation of the growth mechanism. The structural elements of our observations are briefly summarized in the following four micrographs, taken in a Hitachi H-8100 TEM operating at an accelerating voltage of 200 kV and with a point-to-point resolution of 0.20 nm.


1997 ◽  
Vol 36 (12) ◽  
pp. 117-124 ◽  
Author(s):  
Tay Joo Hwa ◽  
S. Jeyaseelan

Chemical conditioning improves sludge dewatering. Choice of chemical conditioners is very much dependent on the characteristics of the sludges and the type of dewatering devices. Lime, alum, ferric chloride and polyelectrolytes are commonly used chemical conditioners. Anaerobic digested sludge samples collected from a sewage treatment plant with different oil contents varying from 1.8% to 8.0% by weight have been examined in the laboratory to find out their specific resistance, capillary suction time and filter yield. Lime and alum were used separately as conditioners. Different dosages of conditioner varying from 2% to 12% by weight were used to determine the optimum chemical dosage for varying oil contents. Lime dosages of about 6% were found to yield favourable characteristics. Addition of alum decreases the specific resistances and capillary suction times of oily sludges rapidly up to 4% dosages. Alum dosages beyond 4% only increase the solids content in the sludge cake and increase the sludge volume to be handled. A correlation between CST and specific resistance to filtration was established. CST can be measured easily and quickly in the laboratories. Using the CST and the correlation a quick prediction on dewaterability can be established.


Author(s):  
Selva Bilge ◽  
Emre Ergene ◽  
Ebru Talak ◽  
Seyda Gokyer ◽  
Yusuf Osman Donar ◽  
...  

AbstractSkeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.


2021 ◽  
Vol 651 (4) ◽  
pp. 042058
Author(s):  
Xuan Sun ◽  
Zhiqiang Guo ◽  
Faguo Zhong ◽  
Zhibin Wu ◽  
Penghui Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document