scholarly journals Spatio-temporal measurement of indoor particulate matter concentrations using a wireless network of low-cost sensors in households using solid fuels

2017 ◽  
Vol 152 ◽  
pp. 59-65 ◽  
Author(s):  
Sameer Patel ◽  
Jiayu Li ◽  
Apoorva Pandey ◽  
Shamsh Pervez ◽  
Rajan K. Chakrabarty ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3617 ◽  
Author(s):  
Hoochang Lee ◽  
Jiseock Kang ◽  
Sungjung Kim ◽  
Yunseok Im ◽  
Seungsung Yoo ◽  
...  

Low-cost light scattering particulate matter (PM) sensors have been widely researched and deployed in order to overcome the limitations of low spatio-temporal resolution of government-operated beta attenuation monitor (BAM). However, the accuracy of low-cost sensors has been questioned, thus impeding their wide adoption in practice. To evaluate the accuracy of low-cost PM sensors in the field, a multi-sensor platform has been developed and co-located with BAM in Dongjak-gu, Seoul, Korea from 15 January 2019 to 4 September 2019. In this paper, a sample variation of low-cost sensors has been analyzed while using three commercial low-cost PM sensors. Influences on PM sensor by environmental conditions, such as humidity, temperature, and ambient light, have also been described. Based on this information, we developed a novel combined calibration algorithm, which selectively applies multiple calibration models and statistically reduces residuals, while using a prebuilt parameter lookup table where each cell records statistical parameters of each calibration model at current input parameters. As our proposed framework significantly improves the accuracy of the low-cost PM sensors (e.g., RMSE: 23.94 → 4.70 μ g/m 3 ) and increases the correlation (e.g., R 2 : 0.41 → 0.89), this calibration model can be transferred to all sensor nodes through the sensor network.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3960
Author(s):  
Janani Venkatraman Jagatha ◽  
André Klausnitzer ◽  
Miriam Chacón-Mateos ◽  
Bernd Laquai ◽  
Evert Nieuwkoop ◽  
...  

Over the last decade, manufacturers have come forth with cost-effective sensors for measuring ambient and indoor particulate matter concentration. What these sensors make up for in cost efficiency, they lack in reliability of the measured data due to their sensitivities to temperature and relative humidity. These weaknesses are especially evident when it comes to portable or mobile measurement setups. In recent years many studies have been conducted to assess the possibilities and limitations of these sensors, however mostly restricted to stationary measurements. This study reviews the published literature until 2020 on cost-effective sensors, summarizes the recommendations of experts in the field based on their experiences, and outlines the quantile-mapping methodology to calibrate low-cost sensors in mobile applications. Compared to the commonly used linear regression method, quantile mapping retains the spatial characteristics of the measurements, although a common correction factor cannot be determined. We conclude that quantile mapping can be a useful calibration methodology for mobile measurements given a well-elaborated measurement plan assures providing the necessary data.


2020 ◽  
Vol 44 (2) ◽  
pp. 81-88
Author(s):  
Chris A. B. Zajchowski ◽  
Erik Rabinowitz ◽  
J. Kyle Davis

Magnesium alba—chalk—is regularly applied by indoor and outdoor climbers to their hands to reduce sweat while climbing in order to grip climbing holds. We investigated the potential for suspended chalk dust to lead to unhealthy levels of indoor particulate matter (PM2.5 and PM10) in two university climbing facilities. Low-cost, Dylos DC 1700 PM monitors sampled air quality during two, 5-day sampling periods. Findings revealed “good” PM values at one university climbing facility and “unhealthy” (PM2.5) or “very unhealthy” (PM10) values at the other institution’s climbing wall. Facility predicted over 60% of the variance in PM readings, and post hoc tests revealed 75% of the variance in PM values at the second institution can be explained by open climbing hours. These findings hold a variety of implications for future research and management of university climbing wall facilities to ensure the health of staff and their patrons.


2016 ◽  
Author(s):  
Mark J. Potosnak ◽  
Bernhard Beck-Winchatz ◽  
Paul Ritter ◽  
Emily Dawson
Keyword(s):  

Author(s):  
John L. Mason ◽  
Anthony Pietsch ◽  
Theodore R. Wilson ◽  
Allen D. Harper

A novel closed-cycle gas turbine power system is now under development by the GWF Power Systems Company for cogeneration applications. Nominally the system produces 5 megawatts (MW) of electric power and 80,000 lb/hr (36,287 kg/hr) of 1000 psig (6895 kPa) steam. The heat source is an atmospheric fluidized bed combustor (AFBC) capable of using low-cost solid fuels while meeting applicable emission standards. A simple, low-pressure ratio, single spool, turbomachine is utilized. This paper describes the system and related performance, as well as the development and test efforts now being conducted. The initial commercial application of the system will be for Enhanced Oil Recovery (EOR) of the heavy crudes produced in California.


2021 ◽  
Vol 11 (5) ◽  
pp. 2093
Author(s):  
Noé Perrotin ◽  
Nicolas Gardan ◽  
Arnaud Lesprillier ◽  
Clément Le Goff ◽  
Jean-Marc Seigneur ◽  
...  

The recent popularity of trail running and the use of portable sensors capable of measuring many performance results have led to the growth of new fields in sports science experimentation. Trail running is a challenging sport; it usually involves running uphill, which is physically demanding and therefore requires adaptation to the running style. The main objectives of this study were initially to use three “low-cost” sensors. These low-cost sensors can be acquired by most sports practitioners or trainers. In the second step, measurements were taken in ecological conditions orderly to expose the runners to a real trail course. Furthermore, to combine the collected data to analyze the most efficient running techniques according to the typology of the terrain were taken, as well on the whole trail circuit of less than 10km. The three sensors used were (i) a Stryd sensor (Stryd Inc. Boulder CO, USA) based on an inertial measurement unit (IMU), 6 axes (3-axis gyroscope, 3-axis accelerometer) fixed on the top of the runner’s shoe, (ii) a Global Positioning System (GPS) watch and (iii) a heart belt. Twenty-eight trail runners (25 men, 3 women: average age 36 ± 8 years; height: 175.4 ± 7.2 cm; weight: 68.7 ± 8.7 kg) of different levels completed in a single race over a 8.5 km course with 490 m of positive elevation gain. This was performed with different types of terrain uphill (UH), downhill (DH), and road sections (R) at their competitive race pace. On these sections of the course, cadence (SF), step length (SL), ground contact time (GCT), flight time (FT), vertical oscillation (VO), leg stiffness (Kleg), and power (P) were measured with the Stryd. Heart rate, speed, ascent, and descent speed were measured by the heart rate belt and the GPS watch. This study showed that on a ≤10 km trail course the criteria for obtaining a better time on the loop, determined in the test, was consistency in the effort. In a high percentage of climbs (>30%), two running techniques stand out: (i) maintaining a high SF and a short SL and (ii) decreasing the SF but increasing the SL. In addition, it has been shown that in steep (>28%) and technical descents, the average SF of the runners was higher. This happened when their SL was shorter in lower steep and technically challenging descents.


2021 ◽  
Vol 13 (15) ◽  
pp. 8263
Author(s):  
Marius Bodor

An important aspect of air pollution analysis consists of the varied presence of particulate matter in analyzed air samples. In this respect, the present work aims to present a case study regarding the evolution in time of quantified particulate matter of different sizes. This study is based on data acquisitioned in an indoor location, already used in a former particulate matter-related article; thus, it can be considered as a continuation of that study, with the general aim to demonstrate the necessity to expand the existing network for pollution monitoring. Besides particle matter quantification, a correlation of the obtained results is also presented against meteorological data acquisitioned by the National Air Quality Monitoring Network. The transformation of quantified PM data in mass per volume and a comparison with other results are also addressed.


Sign in / Sign up

Export Citation Format

Share Document