Canaries at the Climbing Wall: A Comparative Study of Particulate Matter at Two University Climbing Walls

2020 ◽  
Vol 44 (2) ◽  
pp. 81-88
Author(s):  
Chris A. B. Zajchowski ◽  
Erik Rabinowitz ◽  
J. Kyle Davis

Magnesium alba—chalk—is regularly applied by indoor and outdoor climbers to their hands to reduce sweat while climbing in order to grip climbing holds. We investigated the potential for suspended chalk dust to lead to unhealthy levels of indoor particulate matter (PM2.5 and PM10) in two university climbing facilities. Low-cost, Dylos DC 1700 PM monitors sampled air quality during two, 5-day sampling periods. Findings revealed “good” PM values at one university climbing facility and “unhealthy” (PM2.5) or “very unhealthy” (PM10) values at the other institution’s climbing wall. Facility predicted over 60% of the variance in PM readings, and post hoc tests revealed 75% of the variance in PM values at the second institution can be explained by open climbing hours. These findings hold a variety of implications for future research and management of university climbing wall facilities to ensure the health of staff and their patrons.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 386
Author(s):  
Simone M. P. Meroni ◽  
Carys Worsley ◽  
Dimitrios Raptis ◽  
Trystan M. Watson

Perovskite solar cells (PSCs) have already achieved comparable performance to industrially established silicon technologies. However, high performance and stability must be also be achieved at large area and low cost to be truly commercially viable. The fully printable triple-mesoscopic carbon perovskite solar cell (mCPSC) has demonstrated unprecedented stability and can be produced at low capital cost with inexpensive materials. These devices are inherently scalable, and large-area modules have already been fabricated using low-cost screen printing. As a uniquely stable, scalable and low-cost architecture, mCPSC research has advanced significantly in recent years. This review provides a detailed overview of advancements in the materials and processing of each individual stack layer as well as in-depth coverage of work on perovskite formulations, with the view of highlighting potential areas for future research. Long term stability studies will also be discussed, to emphasise the impressive achievements of mCPSCs for both indoor and outdoor applications.


2019 ◽  
Vol 11 (24) ◽  
pp. 7220 ◽  
Author(s):  
Sergio Trilles ◽  
Ana Belen Vicente ◽  
Pablo Juan ◽  
Francisco Ramos ◽  
Sergi Meseguer ◽  
...  

A suitable and quick determination of air quality allows the population to be alerted with respect to high concentrations of pollutants. Recent advances in computer science have led to the development of a high number of low-cost sensors, improving the spatial and temporal resolution of air quality data while increasing the effectiveness of risk assessment. The main objective of this work is to perform a validation of a particulate matter (PM) sensor (HM-3301) in indoor and outdoor environments to study PM2.5 and PM10 concentrations. To date, this sensor has not been evaluated in real-world situations, and its data quality has not been documented. Here, the HM-3301 sensor is integrated into an Internet of things (IoT) platform to establish a permanent Internet connection. The validation is carried out using a reference sampler (LVS3 of Derenda) according to EN12341:2014. It is focused on statistical insight, and environmental conditions are not considered in this study. The ordinary Linear Model, the Generalized Linear Model, Locally Estimated Scatterplot Smoothing, and the Generalized Additive Model have been proposed to compare and contrast the outcomes. The low-cost sensor is highly correlated with the reference measure ( R 2 greater than 0.70), especially for PM2.5, with a very high accuracy value. In addition, there is a positive relationship between the two measurements, which can be appropriately fitted through the Locally Estimated Scatterplot Smoothing model.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3960
Author(s):  
Janani Venkatraman Jagatha ◽  
André Klausnitzer ◽  
Miriam Chacón-Mateos ◽  
Bernd Laquai ◽  
Evert Nieuwkoop ◽  
...  

Over the last decade, manufacturers have come forth with cost-effective sensors for measuring ambient and indoor particulate matter concentration. What these sensors make up for in cost efficiency, they lack in reliability of the measured data due to their sensitivities to temperature and relative humidity. These weaknesses are especially evident when it comes to portable or mobile measurement setups. In recent years many studies have been conducted to assess the possibilities and limitations of these sensors, however mostly restricted to stationary measurements. This study reviews the published literature until 2020 on cost-effective sensors, summarizes the recommendations of experts in the field based on their experiences, and outlines the quantile-mapping methodology to calibrate low-cost sensors in mobile applications. Compared to the commonly used linear regression method, quantile mapping retains the spatial characteristics of the measurements, although a common correction factor cannot be determined. We conclude that quantile mapping can be a useful calibration methodology for mobile measurements given a well-elaborated measurement plan assures providing the necessary data.


2021 ◽  
Author(s):  
Ranjeet S. Sokhi ◽  
Nicolas Moussiopoulos ◽  
Alexander Baklanov ◽  
John Bartzis ◽  
Isabelle Coll ◽  
...  

Abstract. This review provides a community’s perspective on air quality research focussing mainly on developments over the past decade. The article provides perspectives on current and future challenges as well as research needs for selected key topics. While this paper is not an exhaustive review of all research areas in the field of air quality, we have selected key topics that we feel are important from air quality research and policy perspectives. After providing a short historical overview, this review focuses on improvements in characterising sources and emissions of air pollution, new air quality observations and instrumentation, advances in air quality prediction and forecasting, understanding interactions of air quality with meteorology and climate, exposure and health assessment, and air quality management and policy. In conducting the review, specific objectives were (i) to address current developments that push the boundaries of air quality research forward, (ii) to highlight the emerging prominent gaps of knowledge in air quality research and (iii) and to make recommendations to guide the direction for future research within the wider community. This review also identifies areas of particular importance for air quality policy. The original concept of this review was borne at the International Conference on Air Quality 2020 (held online due to the COVID 19 restrictions during 18–26 May 2020), but the article incorporates a wider landscape of research literature within the field of air quality science. On air pollution emissions the review highlights, in particular, the need to reduce uncertainties in emissions from diffuse sources, particulate matter chemical components, shipping emissions and the importance of considering both indoor and outdoor sources. There is a growing need to have integrated air pollution and related observations from both ground based and remote sensing instruments, including especially those on satellites. The research should also capitalize on the growing area of lower cost sensors, while ensuring a quality of the measurements which are regulated by guidelines. Connecting various physical scales in air quality modelling is still a continual issue, with cities being affected by air pollution gradients at local scales and by long range transport. At the same time, one should allow for the impacts from climate change on a longer timescale. Earth system modelling offers considerable potential by providing a consistent framework for treating scales and processes, especially where there are significant feedbacks, such as those related to aerosols, chemistry and meteorology. Assessment of exposure to air pollution should consider both the impacts of indoor and outdoor emissions, as well as apply more sophisticated, dynamic modelling approaches. With particulate matter being one of the most important pollutants for health, research is indicating the urgent need to understand, in particular, the role of particle number and chemical components in terms of health impact, which in turn requires improved emission inventories and models for predicting high resolution distributions of these metrics over cities. The review also examines, how air pollution management needs to adapt to the above-mentioned new challenges and briefly considers the implications from the COVID-19 pandemic for air quality. Finally, we provide recommendations for air quality research and support for policy.


2021 ◽  
Vol 13 (4) ◽  
pp. 2263
Author(s):  
Luca Tofful ◽  
Maria Catrambone ◽  
Marco Giusto ◽  
Salvatore Pareti ◽  
Elena Rantica ◽  
...  

In the VIEPI project (Integrated evaluation of the exposure to indoor particulate matter) framework, we carried out a 1-year study of the concentration and chemical composition of particulate matter (PM) in a 5 story building in the Sapienza University of Rome (Italy). Each sampling had a duration of 1 month and was carried out indoors and outdoors in six classrooms. The chemical analyses were grouped to obtain information about the main PM sources. Micro-elements in their soluble and insoluble fractions were used to trace additional sources. Indoor PM composition was dominated by soil components and, to a lesser extent, by the organics, which substantially increased when people crowded the sites. The penetration of PM components was regulated by their chemical nature and by the dimensions of the particles in which they were contained. For the first time in crowded indoor environments, three different chemical assays aimed to determine PM redox properties complemented chemical composition measurements. These preliminary tests showed that substantially different redox properties characterised atmospheric particles in indoor and outdoor sites. The innovative characteristics of this study (time duration, number of considered environments) were essential to obtain relevant information about PM composition and sources in indoor academic environments and the occupants’ role.


Author(s):  
E. Angelats ◽  
J. A. Navarro

Civil protection and emergency teams work usually under very risky conditions that endanger their lives. One of the factors contributing to such risks is the lack of knowledge about their physical environment, especially when working indoors. Mapping and location indoor and outdoor technologies exist; for outdoors, very good levels of precision and accuracy may be obtained using offthe- shelf equipment; on the other side, and although good solutions for indoor environments are available, these require some extra pre-deployed infrastructure in the area to navigate, which is unacceptable in the case of emergency teams. It may be said, then, that no mature indoor + outdoor integrated solution providing the appropriate precision and accuracy for the purposes of emergency teams exist. In this paper, the assessment of a set of currently available sensors (IMUs, RGB-D cameras, GNSS receivers) and algorithms is presented to show that it is already possible to build such a solution relying on them – providing that appropriate (indoor) lightning and texture conditions exist.


2019 ◽  
Vol 28 (5) ◽  
pp. 3043-3062 ◽  
Author(s):  
Karolina Kuskowska ◽  
Wioletta Rogula-Kozłowska ◽  
Kamila Widziewicz ◽  
Patrycja Rogula-Kopiec

1969 ◽  
Vol 21 (03) ◽  
pp. 594-603 ◽  
Author(s):  
Y Takada ◽  
A Takada ◽  
J. L Ambrus

SummarySephadex gel filtration of human plasma gave results suggesting the presence of two proactivators of plasminogen, termed proactivators A and B.Activity resembling that of proactivator A was found in rabbit plasma, but not in guinea pig plasma.Plasminogen activators produced by the interaction of proactivator A of human plasma with streptokinase had no caseinolytic or TAMe esterolytic effect.Proactivator A can be separated in a form apparently free from plasminogen, as shown by the heated fibrin plate test and by immunological analysis. On the other hand, proactivator B concentrates prepared so far are contamined with plasminogen.Human proactivators appear to be far more susceptible to streptokinase than are rabbit proactivators.Inhibitors of the fibrinolysin system were observed in the plasmas of all 3 species. These inhibitors are not present in the euglobulin fraction of plasma. Sephadex fractionation of euglobulin fractions results in proactivator preparations that do not contain inhibitors.


Sign in / Sign up

Export Citation Format

Share Document