A role for p53 in mitochondrial stress response control of longevity in C. elegans

2010 ◽  
Vol 45 (7-8) ◽  
pp. 550-557 ◽  
Author(s):  
Alessandro Torgovnick ◽  
Alfonso Schiavi ◽  
Roberto Testi ◽  
Natascia Ventura
Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 100
Author(s):  
Silvia Maglioni ◽  
Nayna Arsalan ◽  
Anna Hamacher ◽  
Shiwa Afshar ◽  
Alfonso Schiavi ◽  
...  

The aging process is concurrently shaped by genetic and extrinsic factors. In this work, we screened a small library of natural compounds, many of marine origin, to identify novel possible anti-aging interventions in Caenorhabditis elegans, a powerful model organism for aging studies. To this aim, we exploited a high-content microscopy platform to search for interventions able to induce phenotypes associated with mild mitochondrial stress, which is known to promote animal’s health- and lifespan. Worms were initially exposed to three different concentrations of the drugs in liquid culture, in search of those affecting animal size and expression of mitochondrial stress response genes. This was followed by a validation step with nine compounds on solid media to refine compounds concentration, which led to the identification of four compounds (namely isobavachalcone, manzamine A, kahalalide F and lutein) consistently affecting development, fertility, size and lipid content of the nematodes. Treatment of Drosophila cells with the four hits confirmed their effects on mitochondria activity and lipid content. Out of these four, two were specifically chosen for analysis of age-related parameters, kahalalide F and lutein, which conferred increased resistance to heat and oxidative stress and extended animals’ healthspan. We also found that, out of different mitochondrial stress response genes, only the C. elegans ortholog of the synaptic regulatory proteins neuroligins, nlg-1, was consistently induced by the two compounds and mediated lutein healthspan effects.


2021 ◽  
Vol 118 (35) ◽  
pp. e2023909118
Author(s):  
Huichao Deng ◽  
Xinhua Qiao ◽  
Ting Xie ◽  
Wenfeng Fu ◽  
Hang Li ◽  
...  

The trace element zinc is essential for many aspects of physiology. The mitochondrion is a major Zn2+ store, and excessive mitochondrial Zn2+ is linked to neurodegeneration. How mitochondria maintain their Zn2+ homeostasis is unknown. Here, we find that the SLC-30A9 transporter localizes on mitochondria and is required for export of Zn2+ from mitochondria in both Caenorhabditis elegans and human cells. Loss of slc-30a9 leads to elevated Zn2+ levels in mitochondria, a severely swollen mitochondrial matrix in many tissues, compromised mitochondrial metabolic function, reductive stress, and induction of the mitochondrial stress response. SLC-30A9 is also essential for organismal fertility and sperm activation in C. elegans, during which Zn2+ exits from mitochondria and acts as an activation signal. In slc-30a9–deficient neurons, misshapen mitochondria show reduced distribution in axons and dendrites, providing a potential mechanism for the Birk–Landau–Perez cerebrorenal syndrome where an SLC30A9 mutation was found.


iScience ◽  
2022 ◽  
pp. 103734
Author(s):  
Arwen W. Gao ◽  
Gaby El Alam ◽  
Amélia Lalou ◽  
Terytty Yang Li ◽  
Marte Molenaars ◽  
...  

2021 ◽  
Author(s):  
Arwen W. Gao ◽  
Gaby El Alam ◽  
Amélia Lalou ◽  
Terytty Yang Li ◽  
Marte Molenaars ◽  
...  

Science ◽  
2021 ◽  
Vol 371 (6533) ◽  
pp. 1059-1063 ◽  
Author(s):  
D. Dipon Ghosh ◽  
Dongyeop Lee ◽  
Xin Jin ◽  
H. Robert Horvitz ◽  
Michael N. Nitabach

Color detection is used by animals of diverse phyla to navigate colorful natural environments and is thought to require evolutionarily conserved opsin photoreceptor genes. We report that Caenorhabditis elegans roundworms can discriminate between colors despite the fact that they lack eyes and opsins. Specifically, we found that white light guides C. elegans foraging decisions away from a blue-pigment toxin secreted by harmful bacteria. These foraging decisions are guided by specific blue-to-amber ratios of light. The color specificity of color-dependent foraging varies notably among wild C. elegans strains, which indicates that color discrimination is ecologically important. We identified two evolutionarily conserved cellular stress response genes required for opsin-independent, color-dependent foraging by C. elegans, and we speculate that cellular stress response pathways can mediate spectral discrimination by photosensitive cells and organisms—even by those lacking opsins.


Author(s):  
Sanjib Guha ◽  
Sarah Fischer ◽  
Gail VW Johnson ◽  
Keith Nehrke

ABSTRACTBackgroundA defining pathological hallmark of the progressive neurodegenerative disorder Alzheimer’s disease (AD) is the accumulation of misfolded tau with abnormal post-translational modifications (PTMs). These include phosphorylation at Threonine 231 (T231) and acetylation at Lysine 274 (K274) and at Lysine 281 (K281). Although tau is recognized to play a central role in pathogenesis of AD, the precise mechanisms by which these abnormal PTMs contribute to the neural toxicity of tau is unclear.MethodsHuman 0N4R tau (wild type) was expressed in touch receptor neurons of the genetic model organism C. elegans through single-copy gene insertion. Defined mutations were then introduced into the single-copy tau transgene through CRISPR-Cas9 genome editing. These mutations included T231E and T231A, to mimic phosphorylation and phospho-ablation of a commonly observed pathological epitope, respectively, and K274/281Q, to mimic disease-associated lysine acetylation. Stereotypical touch response assays were used to assess behavioral defects in the transgenic strains as a function of age, and genetically-encoded fluorescent biosensors were used to measure the morphological dynamics and turnover of touch neuron mitochondria.ResultsUnlike existing tau overexpression models, C. elegans single-copy expression of tau did not elicit overt pathological phenotypes at baseline. However, strains expressing disease associated PTM-mimetics (T231E and K274/281Q) exhibited reduced touch sensation and morphological abnormalities that increased with age. In addition, the PTM-mimetic mutants lacked the ability to engage mitophagy in response to mitochondrial stress.ConclusionsLimiting the expression of tau results in a genetic model where pathological modifications and age result in evolving phenotypes, which may more closely resemble the normal progression of AD. The finding that disease-associated PTMs suppress compensatory responses to mitochondrial stress provides a new perspective into the pathogenic mechanisms underlying AD.


2020 ◽  
Vol 55 (S1) ◽  
pp. 89-105

Cell volume is one of the most aggressively defended physiological set points in biology. Changes in intracellular ion and water concentrations, which are induced by changes in metabolism or environmental exposures, disrupt protein folding, enzymatic activity, and macromolecular assemblies. To counter these challenges, cells and organisms have evolved multifaceted, evolutionarily conserved molecular mechanisms to restore cell volume and repair stress induced damage. However, many unanswered questions remain regarding the nature of cell volume 'sensing' as well as the molecular signaling pathways involved in activating physiological response mechanisms. Unbiased genetic screening in the model organism C. elegans is providing new and unexpected insights into these questions, particularly questions relating to the hypertonic stress response (HTSR) pathway. One surprising characteristic of the HTSR pathway in C. elegans is that it is under strong negative regulation by proteins involved in protein homeostasis and the extracellular matrix (ECM). The role of the ECM in particular highlights the importance of studying the HTSR in the context of a live organism where native ECM-tissue associations are preserved. A second novel and recently discovered characteristic is that the HTSR is regulated at the post-transcriptional level. The goal of this review is to describe these discoveries, to provide context for their implications, and to raise outstanding questions to guide future research.


2021 ◽  
Author(s):  
Avijit Mallick ◽  
Shane K. B. Taylor ◽  
Sakshi Mehta ◽  
Bhagwati P. Gupta

ABSTRACTAXIN family members control diverse biological processes in eukaryotes. As a scaffolding protein, AXIN facilitates interactions between cellular components and provides specificity to signaling pathways. Despite its crucial roles in metazoans and discovery of a large number of family members, the mechanism of AXIN function is not very well understood. The C. elegans AXIN homolog PRY-1 provides a powerful tool to identify interacting genes and downstream effectors that function in a conserved manner to regulate AXIN-mediated signaling. Previous work demonstrated pry-1’s essential role in developmental processes such as reproductive system, seam cells, and a P lineage cell P11.p. More recently, our lab carried out a transcriptome profiling of pry-1 mutant and uncovered the essential role of the gene in lipid metabolism, stress response, and aging. In this study, we have extended the work on pry-1 by reporting a novel interacting gene picd-1 (pry-1-interacting CABIN1 domain containing). Our findings have revealed that picd-1 plays an essential role in C. elegans and is involved in several pry-1-mediated processes including regulation of stress response and lifespan maintenance. In support of this, picd-1 expression overlaps with pry-1 in multiple tissues throughout the lifespan of animals. Further experiments showed that picd-1 inhibits CREB-regulated transcriptional coactivator homolog CRTC-1 function, which promotes longevity in a calcineurin-dependent manner. These data provide evidence for an essential role of the CABIN1 domain protein PICD-1 in mediating PRY-1 signaling in C. elegans.


Sign in / Sign up

Export Citation Format

Share Document