Macrophage and T-cell fate control: insights from tracking transcription factor dynamics in single cells

2014 ◽  
Vol 42 (8) ◽  
pp. S16
Author(s):  
Hao Yuan Kueh ◽  
Michael Elowitz ◽  
Ellen Rothenberg
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Wu ◽  
Jiaqi Wu ◽  
Minghua Deng ◽  
Yihan Lin

AbstractRecent single-cell studies have revealed that yeast stress response involves transcription factors that are activated in pulses. However, it remains unclear whether and how these dynamic transcription factors temporally interact to regulate stress survival. Here we show that budding yeast cells can exploit the temporal relationship between paralogous general stress regulators, Msn2 and Msn4, during stress response. We find that individual pulses of Msn2 and Msn4 are largely redundant, and cells can enhance the expression of their shared targets by increasing their temporal divergence. Thus, functional redundancy between these two paralogs is modulated in a dynamic manner to confer fitness advantages for yeast cells, which might feed back to promote the preservation of their redundancy. This evolutionary implication is supported by evidence from Msn2/Msn4 orthologs and analyses of other transcription factor paralogs. Together, we show a cell fate control mechanism through temporal redundancy modulation in yeast, which may represent an evolutionarily important strategy for maintaining functional redundancy between gene duplicates.


2018 ◽  
Author(s):  
Amaleah Hartman ◽  
Xiao Hu ◽  
Xinyue Chen ◽  
Anna E. Eastman ◽  
Cindy Yang ◽  
...  

SUMMARYWhile Yes-associated protein (YAP) antagonizes pluripotency during early embryogenesis, it has also been shown to promote stemness of multiple stem cell types, including pluripotent stem cells. Whether cellular context underlies these distinct functions of YAP in pluripotency remains unclear. Here, we establish that depending on the specific cells in which it is expressed, YAP exhibits opposing effects on pluripotency induction from somatic cells. Specifically, YAP inhibits pluripotency induction cell-autonomously but promotes it non-cell-autonomously. For its non-cell-autonomous role, YAP alters the expression of many secreted and matricellular proteins including CYR61, which recapitulates the promotional effect when added as a recombinant protein. Thus, we define a unique YAP-driven non-cell-autonomous process that enhances pluripotency induction. Our work highlights the importance of considering the distinct contributions from heterologous cell types in deciphering the mechanism of cell fate control and calls for careful re-examination of the co-existing bystander cells in complex cultures or tissues.


Author(s):  
Leonora Buzanska ◽  
Marzena Zychowicz ◽  
Ana Ruiz ◽  
François Rossi

2010 ◽  
Vol 24 (4) ◽  
pp. 327-332 ◽  
Author(s):  
J. K. Wang ◽  
M.-C. Tsai ◽  
G. Poulin ◽  
A. S. Adler ◽  
S. Chen ◽  
...  

2004 ◽  
Vol 2 (10) ◽  
pp. 771-771
Author(s):  
Susan Jones

2017 ◽  
Vol 215 (1) ◽  
pp. 233-248 ◽  
Author(s):  
Christina Eich ◽  
Jochen Arlt ◽  
Chris S. Vink ◽  
Parham Solaimani Kartalaei ◽  
Polynikis Kaimakis ◽  
...  

Cell fate is established through coordinated gene expression programs in individual cells. Regulatory networks that include the Gata2 transcription factor play central roles in hematopoietic fate establishment. Although Gata2 is essential to the embryonic development and function of hematopoietic stem cells that form the adult hierarchy, little is known about the in vivo expression dynamics of Gata2 in single cells. Here, we examine Gata2 expression in single aortic cells as they establish hematopoietic fate in Gata2Venus mouse embryos. Time-lapse imaging reveals rapid pulsatile level changes in Gata2 reporter expression in cells undergoing endothelial-to-hematopoietic transition. Moreover, Gata2 reporter pulsatile expression is dramatically altered in Gata2+/− aortic cells, which undergo fewer transitions and are reduced in hematopoietic potential. Our novel finding of dynamic pulsatile expression of Gata2 suggests a highly unstable genetic state in single cells concomitant with their transition to hematopoietic fate. This reinforces the notion that threshold levels of Gata2 influence fate establishment and has implications for transcription factor–related hematologic dysfunctions.


BMC Biology ◽  
2013 ◽  
Vol 11 (1) ◽  
pp. 73 ◽  
Author(s):  
Xi Chen ◽  
Jia Chen ◽  
Siting Gan ◽  
Huaji Guan ◽  
Yuan Zhou ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. SCI-3-SCI-3
Author(s):  
Ellen Rothenberg

Abstract The transition from multipotency to lineage commitment can be followed with particular clarity for T cell precursors. In this lineage, the role of environmental signals can be clearly separated from the role of intrinsic fate programming in individual cells and the cells' developmental responses to changing conditions and can be tracked in real time. T cell precursors are still multipotent when they first enter the thymus, and if they are removed from the thymic microenvironment at this stage they can give rise to non-T cells including dendritic cells and myeloid cells. For multiple cell divisions, they preserve this multipotency and are only kept in line to become T cells conditionally, by Notch signaling from the thymic stroma. Then at a specific point of no return, the cells become unable to give rise to anything except T cells regardless of environment, and this is the point of commitment. Commitment is clearly the readout of a change in internal transcriptional regulatory state. To determine how this is controlled, we and others have charted transcription factor expression changes across this interval and changes in chromatin modification and DNA accessibility that accompany the transition, and we have been able to use functional perturbation tests to narrow down the key regulators that catalyze and enforce this transition. A particularly important commitment factor is encoded by the Bcl11b gene, which is released from previously repressed chromatin and sharply activated at the transcriptional level just as the cells become committed. The Bcl11b gene product is required in all alpha beta and most gamma delta T cells to enable the commitment process to occur. These properties make it highly illuminating as an indicator of the regulatory state in individual differentiating T-cell precursors. We have generated a series of knock-in Bcl11b fluorescent reporter alleles to probe the correlation of Bcl11b expression with changes in specific target genes, to determine the transcription factor requirements for Bcl11b gene activation in the gene regulatory network controlling commitment in single cells, and to measure the role of epigenetic modification of the Bcl11b locus on the kinetics of transition from uncommitted to committed states. These results and their implications will be presented. Importantly, the use of live-cell reporters reveals a level of all-or-none, stochastic regulation in the responses of individual cells to combinatorial transcription factor action at this developmental watershed1. Reference: 1. Kueh HY, Yui MA, Ng KKH, et al. Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment. Nature Immunology. 2016.17, 956-965. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document