Competitive in vivo screening of 64 candidate leukemia stem cell self-renewal regulators selects for genes protracting stem cell latency

2017 ◽  
Vol 53 ◽  
pp. S91
Author(s):  
Kerstin Kaufmann ◽  
Stanley Ng ◽  
Shin-ichiro Takayanagi ◽  
Jessica McLeod ◽  
Peter van Galen ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 238-238 ◽  
Author(s):  
Edward Kavalerchik ◽  
Jason Gotlib ◽  
Ifat Geron ◽  
Annelie Abrahamsson ◽  
Wolfgang Wrasidlo ◽  
...  

Abstract Introduction A growing proportion of chronic myelogenous leukemia (CML) patients show evidence of disease progression. Recent research suggests that leukemia stem cells (LSC) that share phenotypic characteristics with granulocyte-macrophage progenitors (GMP) are involved in CML progression. These LSC have aberrantly gained self-renewal capacity as a result of enhanced Wnt/beta-catenin signaling. We assayed the capacity of novel Wnt/beta-catenin antagonists to inhibit CML LSC. Methods To assay the efficacy of a novel Wnt inhibitor, MC-001, HEK293 cells were transfected with a Wnt-dependent reporter gene and expression plasmid for Dsh. After 16h, the cells were treated for 24 h with MCC-001, a novel marine sponge derived inhibitor, at varying concentrations and the reporter gene activity was measured. All cells were also transfected with a b-gal reporter gene to control for transfection efficiency. To assess the effects of MCC-001 and other Wnt inhibitors on Wnt/beta-catenin induced self-renewal, hematopoietic stem cells (HSC), GMP and lineage positive cells from normal (n=8) and advanced phase CML (n=8) peripheral blood and marrow (n=8) were clone sorted with the aid of a FACS Aria into methocult media (Stem Cell Technologies) with or without Wnt inhibitors including recombinant Dkk1, lentiviral axin or MCC-001. On day 10, individual colonies were plucked and replated in new methylcellulose and the replating efficiency determined at day 10. To establish an in vivo CML LSC model, HSC, GMP and lineage positive cells were transduced with a lentiviral luciferase GFP for 48 hours and transplanted intrahepatically into newborn immunocompromised mice (RAG2−/−gamma−/−) mice that facilitate high levels of human hematopoietic progenitor engraftment. Results The HEK293 beta-catenin reporter assay revealed that the MC-001 IC50 was 2.1 microM. In comparative Wnt inhibitor replating assays (n=8), recombinant Dkk1 did not inhibit CML HSC (n=8) while lentiviral axin and MCC-001 (at 2 and 10 microM) inhibited both CML HSC and CML GMP at doses that spared normal HSC replating (Figure 1). Transplantation of CML HSC, GMP and lineage positive cells into RAG2−/−gamma−/− mice demonstrated that only CML GMP provided serial transplantation potential and thus, were enriched for the LSC population (Figure 2). Conclusions Selective Wnt/beta-catenin inhibition with a marine sponge derived beta-catenin antagonist, MCC-001, blocks in vitro replating capacity of CML LSC at doses that spare normal HSC. Current experiments focus on in vivo inhibition of LSC self-renewal with novel Wnt inhibitors in a robust CML LSC bioluminescent imaging model (Figure 2). Figure 1. Chronic Myelogenous Leukemia Stem Cell Inhibition with MCC-001: A novel β-catenin Inhibitor Figure 1. Chronic Myelogenous Leukemia Stem Cell Inhibition with MCC-001: A novel β-catenin Inhibitor Figure 2. Bioluminescent Chronic Myelogenous Leukemia Stem Cell Transplantation Model. Figure 2. Bioluminescent Chronic Myelogenous Leukemia Stem Cell Transplantation Model.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lele Song ◽  
Renxu Chang ◽  
Xia Sun ◽  
Liying Lu ◽  
Han Gao ◽  
...  

AbstractThe mucosa microenvironment is critical for intestinal stem cell self-renewal and reconstruction of the epithelial barrier in inflammatory bowel disease (IBD), where the mechanisms underlying cross-talk between intestinal crypts and the microenvironment remain unclear. Here, we firstly identified miR-494-3p as an important protector in colitis. miR-494-3p levels were decreased and negatively correlated with the severity in human IBD samples, as well as in colitis mice. In colitis crypts, a notable cytokine–cytokine receptor, miR-494-3p-targeted EDA2R and the ligand EDA-A2, suppressed colonic stemness and epithelial repair by inhibiting β-catenin/c-Myc. In differentiated IECs, miR-494-3p inhibits macrophage recruitment, M1 activation and EDA-A2 secretion by targeting IKKβ/NF-κB in colitis. A miR-494-3p agomir system notably ameliorated the severity of colonic colitis in vivo. Collectively, our findings uncover a miR-494-3p-mediated cross-talk mechanism by which macrophage-induced intestinal stem cell impairment aggravates intestinal inflammation.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1204-1204
Author(s):  
Xi Jin ◽  
Tingting Qin ◽  
Nathanael G Bailey ◽  
Meiling Zhao ◽  
Kevin B Yang ◽  
...  

Abstract Activating mutations in RAS and somatic loss-of-function mutations in the ten-eleven translocation 2 (TET2) are frequently detected in hematologic malignancies. Global genomic sequencing revealed the co-occurrence of RAS and TET2 mutations in chronic myelomonocytic leukemias (CMMLs) and acute myeloid leukemias (AMLs), suggesting that the two mutations collaborate to induce malignant transformation. However, how the two mutations interact with each other, and the effects of co-existing RAS and TET2 mutations on hematopoietic stem cell (HSC) function and leukemogenesis, remains unknown. In this study, we generated conditional Mx1-Cre+;NrasLSL-G12D/+;Tet2fl/+mice (double mutant) and activated the expression of mutant Nras and Tet2 in hematopoietic tissues with poly(I:C) injections. Double mutant mice had significantly reduced survival compared to mice expressing only NrasG12D/+ or Tet2+/-(single mutants). Hematopathology and flow-cytometry analyses showed that these mice developed accelerated CMML-like phenotypes with higher myeloid cell infiltrations in the bone marrow and spleen as compared to single mutants. However, no cases of AML occurred. Given that CMML is driven by dys-regulated HSC function, we examined stem cell competitiveness, self-renewal and proliferation in double mutant mice at the pre-leukemic stage. The absolute numbers of HSCs in 10-week old double mutant mice were comparable to that observed in wild type (WT) and single mutant mice. However, double mutant HSCsdisplayed significantly enhanced self-renewal potential in colony forming (CFU) replating assays. In vivo competitive serial transplantation assays using either whole bone marrow cells or 15 purified SLAM (CD150+CD48-Lin-Sca1+cKit+) HSCs showed that while single mutant HSCs have increased competitiveness and self-renewal compared to WT HSCs, double mutants have further enhanced HSC competitiveness and self-renewal in primary and secondary transplant recipients. Furthermore, in vivo BrdU incorporation demonstrated that while Nras mutant HSCs had increased proliferation rate, Tet2 mutation significantly reduced the level of HSC proliferation in double mutants. Consistent with this, in vivo H2B-GFP label-retention assays (Liet. al. Nature 2013) in the Col1A1-H2B-GFP;Rosa26-M2-rtTA transgenic mice revealed significantly higher levels of H2B-GFP in Tet2 mutant HSCs, suggesting that Tet2 haploinsufficiency reduced overall HSC cycling. Overall, these findings suggest that hyperactive Nras signaling and Tet2 haploinsufficiency collaborate to enhance HSC competitiveness through distinct functions: N-RasG12D increases HSC self-renewal, proliferation and differentiation, while Tet2 haploinsufficiency reduces HSC proliferation to maintain HSCs in a more quiescent state. Consistent with this, gene expression profiling with RNA sequencing on purified SLAM HSCs indicated thatN-RasG12D and Tet2haploinsufficiencyinduce different yet complementary cellular programs to collaborate in HSC dys-regulation. To fully understand how N-RasG12D and Tet2dose reduction synergistically modulate HSC properties, we examined HSC response to cytokines important for HSC functions. We found that when HSCs were cultured in the presence of low dose stem cell factor (SCF) and thrombopoietin (TPO), only Nras single mutant and Nras/Tet2 double mutant HSCs expanded, but not WT or Tet2 single mutant HSCs. In the presence of TPO and absence of SCF, HSC expansion was only detected in the double mutants. These results suggest that HSCs harboring single mutation of Nras are hypersensitive to cytokine signaling, yet the addition of Tet2 mutation allows for further cytokine independency. Thus, N-RasG12D and Tet2 dose reduction collaborate to promote cytokine signaling. Together, our data demonstrate that hyperactive Nras and Tet2 haploinsufficiency collaborate to alter global HSC gene expression and sensitivity to stem cell cytokines. These events lead to enhanced HSC competitiveness and self-renewal, thus promoting transition toward advanced myeloid malignancy. This model provides a novel platform to delineate how mutations of signaling molecules and epigenetic modifiers collaborate in leukemogenesis, and may identify opportunities for new therapeutic interventions. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 51 (11) ◽  
pp. 1-20 ◽  
Author(s):  
Jun-Cheng Guo ◽  
Yi-Jun Yang ◽  
Jin-Fang Zheng ◽  
Jian-Quan Zhang ◽  
Min Guo ◽  
...  

AbstractHepatocellular carcinoma (HCC) is a major cause of cancer-related deaths, but its molecular mechanisms are not yet well characterized. Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis, including that of HCC. However, the role of homeobox A11 antisense (HOXA11-AS) in determining HCC stem cell characteristics remains to be explained; hence, this study aimed to investigate the effects of HOXA11-AS on HCC stem cell characteristics. Initially, the expression patterns of HOXA11-AS and HOXA11 in HCC tissues, cells, and stem cells were determined. HCC stem cells, successfully sorted from Hep3B and Huh7 cells, were transfected with short hairpin or overexpression plasmids for HOXA11-AS or HOXA11 overexpression and depletion, with an aim to study the influences of these mediators on the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo. Additionally, the potential relationship and the regulatory mechanisms that link HOXA11-AS, HOXA11, and the Wnt signaling pathway were explored through treatment with Dickkopf-1 (a Wnt signaling pathway inhibitor). HCC stem cells showed high expression of HOXA11-AS and low expression of HOXA11. Both HOXA11-AS silencing and HOXA11 overexpression suppressed the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo, as evidenced by the decreased expression of cancer stem cell surface markers (CD133 and CD44) and stemness-related transcription factors (Nanog, Sox2, and Oct4). Moreover, silencing HOXA11-AS inactivated the Wnt signaling pathway by decreasing the methylation level of the HOXA11 promoter, thereby inhibiting HCC stem cell characteristics. Collectively, this study suggested that HOXA11-AS silencing exerts an antitumor effect, suppressing HCC development via Wnt signaling pathway inactivation by decreasing the methylation level of the HOXA11 promoter.


2019 ◽  
Vol 116 (4) ◽  
pp. 1447-1456 ◽  
Author(s):  
Rong Lu ◽  
Agnieszka Czechowicz ◽  
Jun Seita ◽  
Du Jiang ◽  
Irving L. Weissman

While the aggregate differentiation of the hematopoietic stem cell (HSC) population has been extensively studied, little is known about the lineage commitment process of individual HSC clones. Here, we provide lineage commitment maps of HSC clones under homeostasis and after perturbations of the endogenous hematopoietic system. Under homeostasis, all donor-derived HSC clones regenerate blood homogeneously throughout all measured stages and lineages of hematopoiesis. In contrast, after the hematopoietic system has been perturbed by irradiation or by an antagonistic anti-ckit antibody, only a small fraction of donor-derived HSC clones differentiate. Some of these clones dominantly expand and exhibit lineage bias. We identified the cellular origins of clonal dominance and lineage bias and uncovered the lineage commitment pathways that lead HSC clones to different levels of self-renewal and blood production under various transplantation conditions. This study reveals surprising alterations in HSC fate decisions directed by conditioning and identifies the key hematopoiesis stages that may be manipulated to control blood production and balance.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yang Song ◽  
Yong Chen ◽  
Yunqian Li ◽  
Xiaoyan Lyu ◽  
Jiayue Cui ◽  
...  

Glioblastoma (GBM) is the most common and malignant intracranial tumor in adults. Despite continuous improvements in diagnosis and therapeutic method, the prognosis is still far away from expectations. The invasive phenotype of GBM is the main reason for the poor prognosis. Epithelial-mesenchymal transition (EMT) is recognized as a participator in this invasive phenotype. Resveratrol, a natural plant-derived compound, is reported to be able to regulate EMT. In the present study, we used TGF-β1 to induce EMT and aimed to evaluate the effect of resveratrol on EMT and to explore the underline mechanism in GBM. Western blotting was used to detect the expression of EMT-related markers, stemness markers, and Smad-dependent signaling. Wound healing assay and transwell invasion assay were performed to evaluate the migratory and invasive ability of GBM cells. Gliosphere formation assay was used to investigate the effect of resveratrol on the ability of self-renewal. Xenograft experiment was conducted to examine the effect of resveratrol on EMT and Smad-dependent signalingin vivo. Our data validated that resveratrol suppressed EMT and EMT-associated migratory and invasive ability via Smad-dependent signaling in GBM cells. We also confirmed that resveratrol obviously inhibited EMT-induced self-renewal ability of glioma stem cells (GSCs) and inhibited EMT-induced cancer stem cell markers Bmi1 and Sox2, suggesting that resveratrol is able to suppress EMT-generated stem cell-like properties in GBM cells. Furthermore, we also showed the inhibitory effect of resveratrol on EMT in xenograft experimentsin vivo. Overall, our study reveals that resveratrol suppresses EMT and EMT-generated stem cell-like properties in GBM by regulating Smad-dependent signaling and provides experimental evidence of resveratrol for GBM treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Geru Zhang ◽  
Qiwen Li ◽  
Quan Yuan ◽  
Shiwen Zhang

Stem cells play an irreplaceable role in the development, homeostasis, and regeneration of the craniofacial bone. Multiple populations of tissue-resident craniofacial skeletal stem cells have been identified in different stem cell niches, including the cranial periosteum, jawbone marrow, temporomandibular joint, cranial sutures, and periodontium. These cells exhibit self-renewal and multidirectional differentiation abilities. Here, we summarized the properties of craniofacial skeletal stem cells, based on their spatial distribution. Specifically, we focused on the in vivo genetic fate mapping of stem cells, by exploring specific stem cell markers and observing their lineage commitment in both the homeostatic and regenerative states. Finally, we discussed their application in regenerative medicine.


2016 ◽  
Vol 19 (2) ◽  
pp. 177-191 ◽  
Author(s):  
Maria Anna Zipeto ◽  
Angela C. Court ◽  
Anil Sadarangani ◽  
Nathaniel P. Delos Santos ◽  
Larisa Balaian ◽  
...  

Blood ◽  
2011 ◽  
Vol 117 (2) ◽  
pp. e27-e38 ◽  
Author(s):  
Brian T. Wilhelm ◽  
Mathieu Briau ◽  
Pamela Austin ◽  
Amélie Faubert ◽  
Geneviève Boucher ◽  
...  

Abstract The molecular mechanisms regulating self-renewal of leukemia stem cells remain poorly understood. Here we report the generation of 2 closely related leukemias created through the retroviral overexpression of Meis1 and Hoxa9. Despite their apparent common origin, these clonal leukemias exhibit enormous differences in stem cell frequency (from 1 in 1.4, FLA2; to 1 in 347, FLB1), suggesting that one of these leukemias undergoes nearly unlimited self-renewal divisions. Using next-generation RNA-sequencing, we characterized the transcriptomes of these phenotypically similar, but biologically distinct, leukemias, identifying hundreds of differentially expressed genes and a large number of structural differences (eg, alternative splicing and promoter usage). Focusing on ligand-receptor pairs, we observed high expression levels of Sdf1-Cxcr4; Jagged2-Notch2/1; Osm-Gp130; Scf-cKit; and Bmp15-Tgfb1/2. Interestingly, the integrin beta 2-like gene (Itgb2l) is both highly expressed and differentially expressed between our 2 leukemias (∼ 14-fold higher in FLA2 than FLB1). In addition, gene ontology analysis indicated G-protein-coupled receptor had a much higher proportion of differential expression (22%) compared with other classes (∼ 5%), suggesting a potential role regulating subtle changes in cellular behavior. These results provide the first comprehensive transcriptome analysis of a leukemia stem cell and document an unexpected level of transcriptome variation between phenotypically similar leukemic cells.


Sign in / Sign up

Export Citation Format

Share Document