RNA-seq analysis of 2 closely related leukemia clones that differ in their self-renewal capacity

Blood ◽  
2011 ◽  
Vol 117 (2) ◽  
pp. e27-e38 ◽  
Author(s):  
Brian T. Wilhelm ◽  
Mathieu Briau ◽  
Pamela Austin ◽  
Amélie Faubert ◽  
Geneviève Boucher ◽  
...  

Abstract The molecular mechanisms regulating self-renewal of leukemia stem cells remain poorly understood. Here we report the generation of 2 closely related leukemias created through the retroviral overexpression of Meis1 and Hoxa9. Despite their apparent common origin, these clonal leukemias exhibit enormous differences in stem cell frequency (from 1 in 1.4, FLA2; to 1 in 347, FLB1), suggesting that one of these leukemias undergoes nearly unlimited self-renewal divisions. Using next-generation RNA-sequencing, we characterized the transcriptomes of these phenotypically similar, but biologically distinct, leukemias, identifying hundreds of differentially expressed genes and a large number of structural differences (eg, alternative splicing and promoter usage). Focusing on ligand-receptor pairs, we observed high expression levels of Sdf1-Cxcr4; Jagged2-Notch2/1; Osm-Gp130; Scf-cKit; and Bmp15-Tgfb1/2. Interestingly, the integrin beta 2-like gene (Itgb2l) is both highly expressed and differentially expressed between our 2 leukemias (∼ 14-fold higher in FLA2 than FLB1). In addition, gene ontology analysis indicated G-protein-coupled receptor had a much higher proportion of differential expression (22%) compared with other classes (∼ 5%), suggesting a potential role regulating subtle changes in cellular behavior. These results provide the first comprehensive transcriptome analysis of a leukemia stem cell and document an unexpected level of transcriptome variation between phenotypically similar leukemic cells.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4014-4014
Author(s):  
Maria Anna Zipeto ◽  
Angela Court Recart ◽  
Nathaniel Delos Santos ◽  
Qingfei Jiang ◽  
Leslie A Crews ◽  
...  

Abstract Background In advanced human malignancies, RNA sequencing (RNA-seq) has uncovered deregulation of adenosine deaminase acting on RNA (ADAR) editases that promote therapeutic resistance and leukemia stem cell (LSC) generation. Chronic myeloid leukemia (CML), an important paradigm for understanding LSC evolution, is initiated by BCR-ABL1 oncogene expression in hematopoietic stem cells (HSCs) but undergoes blast crisis (BC) transformation following aberrant self-renewal acquisition by myeloid progenitors harboring cytokine-responsive ADAR1 p150 overexpression. Emerging evidence suggests that adenosine to inosine editing at the level of primary (pri) or precursor (pre)-microRNA (miRNA), alters miRNA biogenesis and impairs biogenesis. However, relatively little is known about the role of inflammatory niche-driven ADAR1 miRNA editing in malignant reprogramming of progenitors into self-renewing LSCs. Methods Primary normal and CML progenitors were FACS-purified and RNA-Seq analysis as well as qRT-PCR validation were performed according to published methods (Jiang, 2013). MiRNAs were extracted from purified CD34+ cells derived from CP, BC CML and cord blood by RNeasy microKit (QIAGEN) and let-7 expression was evaluated by qRT-PCR using miScript Primer assay (QIAGEN). CD34+ cord blood (n=3) were transduced with lentiviral human JAK2, let-7a, wt-ADAR1 and mutant ADAR1, which lacks a functional deaminase domain. Because STAT signaling triggers ADAR1 transcriptional activation and both BCR-ABL1 and JAK2 activate STAT5a, nanoproteomics analysis of STAT5a levels was performed. Engrafted immunocompromised RAG2-/-γc-/- mice were treated with a JAK2 inhibitor, SAR302503, alone or in combination with a potent BCR-ABL1 TKI Dasatinib, for two weeks followed by FACS analysis of human progenitor engraftment in hematopoietic tissues and serial transplantation. Results RNA-seq and qRT-PCR analysis in FACS purified BC CML progenitors revealed an over-representation of inflammatory pathway activation and higher levels of JAK2-dependent inflammatory cytokine receptors, when compared to normal and chronic phase (CP) progenitors. Moreover, RNA-seq and qRT-PCR analysis showed decreased levels of mature let-7 family of stem cell regulatory miRNA in BC compared to normal and CP progenitors. Lentiviral human JAK2 transduction of CD34+ progenitors led to an increase of ADAR1 transcript levels and to a reduction in let-7 family members. Interestingly, lentiviral human JAK2 transduction of normal progenitors enhanced ADAR1 activity, as revealed by RNA editing-specific qRT-PCR and RNA-seq analysis. Moreover, qRT-PCR analysis of CD34+ progenitors transduced with wt-ADAR1, but not mutant ADAR1 lacking functional deaminase activity, reduced let-7 miRNA levels. These data suggested that ADAR1 impairs let-7 family biogenesis in a RNA editing dependent manner. Interestingly, RNA-seq analysis confirmed higher frequency of A-to-I editing events in pri- and pre-let-7 family members in CD34+ BC compared to CP progenitors, as well as normal progenitors transduced with human JAK2 and ADAR1-wt, but not mutant ADAR1. Lentiviral ADAR1 overexpression enhanced CP CML progenitor self-renewal and decreased levels of some members of the let-7 family. In contrast, lentiviral transduction of human let-7a significantly reduced self-renewal of progenitors. In vivo treatments with Dasatinib in combination with a JAK2 inhibitor, significantly reduced self-renewal of BCR-ABL1 expressing BC progenitors in the bone marrow thereby prolonging survival of serially transplanted mice. Finally, a reduction in ADAR1 p150 transcripts was also noted following combination treatment only suggesting a role for ADAR1 in CSC propagation. Conclusion This is the first demonstration that intrinsic BCR-ABL oncogenic signaling and extrinsic cytokines signaling through JAK2 converge on activation of ADAR1 that drives LSC generation by impairing let-7 miRNA biogenesis. Targeted reversal of ADAR1-mediated miRNA editing may enhance eradication of inflammatory niche resident cancer stem cells in a broad array of malignancies, including JAK2-driven myeloproliferative neoplasms. Disclosures Jamieson: J&J: Research Funding; GSK: Research Funding.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Zhou ◽  
Thomas J. Kipps ◽  
Suping Zhang

Wnt5a is involved in activating several noncanonical Wnt signaling pathways, which can inhibit or activate canonical Wnt/β-catenin signaling pathway in a receptor context-dependent manner. Wnt5a signaling is critical for regulating normal developmental processes, including stem cell self-renewal, proliferation, differentiation, migration, adhesion, and polarity. Moreover, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a signaling in regulating normal and cancer stem cell self-renewal, cancer cell proliferation, migration, and invasion. In this article, we review recent findings regarding the molecular mechanisms and roles of Wnt5a signaling in stem cells in embryogenesis and in the normal or neoplastic breast or ovary, highlighting that Wnt5a may have different effects on target cells depending on the surface receptors expressed by the target cell.


2017 ◽  
Vol 53 ◽  
pp. S91
Author(s):  
Kerstin Kaufmann ◽  
Stanley Ng ◽  
Shin-ichiro Takayanagi ◽  
Jessica McLeod ◽  
Peter van Galen ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 883-883 ◽  
Author(s):  
TzuChieh Ho ◽  
Mark W LaMere ◽  
Kristen O'Dwyer ◽  
Jason H. Mendler ◽  
Jane L. Liesveld ◽  
...  

Abstract Acute Myelogenous Leukemia (AML) is a disease that clinically evolves over time as many patients who are responsive to therapy upfront acquire resistance to the same agents when applied in the relapse setting. The stem cell model for AML has been invoked to explain primary resistance to standard therapy; the leukemia stem cell (LSC) population representing a therapy-refractory reservoir for relapse. There have been no prospective efforts to formally assess the evolution of the LSC population during patients’ clinical course. We performed a prospective characterization of specimens from a well-defined cohort of patients with AML at diagnosis and relapse to assess the frequency and phenotype of functionally defined LSCs. Methods Primary bone marrow and peripheral blood samples were collected on IRB approved protocols from patients with newly diagnosed AML undergoing induction therapy. Twenty-five patients who relapsed after achieving a complete remission were selected for further study. Screening studies identified seven patients whose pre-therapy samples demonstrated sustained engraftment of NSG mice following transplantation. Pre-therapy and post-relapse LSC frequencies were assessed using xenotransplantation limiting dilution analyses (LDA). We assessed the frequencies of CD45RA, CD32, TIM-3, CD96, CD47, and CD97 expressing populations that have been previously published to possess LSC activity. Functionally validated pre-therapy and post-relapse LSC populations were identified using fluorescent labeled cell sorting and NSG xenotransplantation. LSC activity was confirmed for each population using secondary xenotransplantation. Gene expression analysis of highly enriched LSC populations from pre-therapy and post-relapse samples was performed using ABI TILDA qPCR analyses following pre-amplification. Results We demonstrated by LDA an 8 to 42-fold increase in LSC frequency between diagnosis and relapse in paired primary patient samples. The increase in LSC activity was not associated with an increase in frequency for phenotypically-defined populations previously reported to possess LSC activity. Rather, we found that LSC activity expanded at relapse to immunophenotypic populations of leukemic cells that did not possess LSC activity prior to treatment. Moreover, in all patients, the number of phenotypically distinct LSC populations (as defined by CD34 and CD38 or CD32 and CD38) detectable at relapse was dramatically expanded. Further, while the majority of the LSC populations’ gene expression profile remained stable between diagnosis and relapse, a subset of genes were enriched in defined LSC populations at relapse including IL3-receptor alpha and IL1-RAP, both previously demonstrated to play a role in LSC biology. Conclusions This study is the first to characterize the natural evolution of LSCs in vivo following treatment and relapse. We demonstrate an increase in LSC activity and greatly increased phenotypic diversity of the LSC population, suggesting a loss of hierarchical organization following relapse. These findings demonstrate that treatment of AML patients with conventional chemotherapy regimens can promote quantitative and qualitative expansion of the LSC compartment. Further, the data indicate that surface antigen immune-phenotype is not predictive of function in relapse and suggest a major limitation to efforts targeting specific surface antigens in the relapse setting. Understanding the mechanisms by which LSC expansion occurs and how to target it will likely improve our currently poor treatment options for patients who relapse. Disclosures: Becker: Millenium: Research Funding.


2019 ◽  
Vol 20 (10) ◽  
pp. 2391 ◽  
Author(s):  
Jiayang Xu ◽  
Qiansi Chen ◽  
Pingping Liu ◽  
Wei Jia ◽  
Zheng Chen ◽  
...  

Salinity is one of the most severe forms of abiotic stress and affects crop yields worldwide. Plants respond to salinity stress via a sophisticated mechanism at the physiological, transcriptional and metabolic levels. However, the molecular regulatory networks involved in salt and alkali tolerance have not yet been elucidated. We developed an RNA-seq technique to perform mRNA and small RNA (sRNA) sequencing of plants under salt (NaCl) and alkali (NaHCO3) stress in tobacco. Overall, 8064 differentially expressed genes (DEGs) and 33 differentially expressed microRNAs (DE miRNAs) were identified in response to salt and alkali stress. A total of 1578 overlapping DEGs, which exhibit the same expression patterns and are involved in ion channel, aquaporin (AQP) and antioxidant activities, were identified. Furthermore, genes involved in several biological processes, such as “photosynthesis” and “starch and sucrose metabolism,” were specifically enriched under NaHCO3 treatment. We also identified 15 and 22 miRNAs that were differentially expressed in response to NaCl and NaHCO3, respectively. Analysis of inverse correlations between miRNAs and target mRNAs revealed 26 mRNA-miRNA interactions under NaCl treatment and 139 mRNA-miRNA interactions under NaHCO3 treatment. This study provides new insights into the molecular mechanisms underlying the response of tobacco to salinity stress.


2016 ◽  
Vol 19 (2) ◽  
pp. 177-191 ◽  
Author(s):  
Maria Anna Zipeto ◽  
Angela C. Court ◽  
Anil Sadarangani ◽  
Nathaniel P. Delos Santos ◽  
Larisa Balaian ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1362-1362
Author(s):  
Yong Wang ◽  
Bradley A. Schulte ◽  
Amanda C. LaRue ◽  
Makio Ogawa ◽  
Daohong Zhou

Abstract Exposure to ionizing radiation (IR) and certain chemotherapeutic agents not only causes acute bone marrow (BM) suppression but also leads to long-term residual hematopoietic injury. This later effect has been attributed to the damage to hematopoietic stem cell (HSC) self-renewal. Using a mouse model, we investigated whether IR induces senescence in HSCs, as induction of HSC senescence can lead to the impairment of HSC self-renewal. The results showed that exposure of C57BL/6 mice to a sublethal dose (6.5 Gy) of total body irradiation (TBI) resulted in a long-lasting quantitative and qualitative reduction in HSCs (Lin− c-kit+ Sca-1+ or LKS+ cells). Compared to control HSCs, HSCs from irradiated BM at 4 weeks after TBI exhibited a significant reduction in day-35 CAFC frequency and deficiency in cell proliferation and colony formation in a single cell culture assay stimulated with SCF/TPO and SCF/TPO/IL-3, respectively. In addition, transplantation of irradiated HSCs (500 LKS+ cells/recipient) produced less than 1% long-term (2-month) engraftment in a competitive repopulation assay while transplantation of the same number of control HSCs resulted in 24.8% engraftment. Furthermore, HSCs from irradiated mice expressed increased levels of p16Ink4a and senescence-associated beta-galactosidase (SA-beta-gal), two commonly used biomarkers of cellular senescence. In contrast, hematopoietic progenitor cells (Lin− c-kit+ Sca-1− or LKS− cells) from irradiated mice did not show significant changes in clonogenesity in a CFU assay and expressed minimal levels of p16Ink4a and SA-beta-gal. These results suggest that exposure to IR can induce senescence selectively in HSCs but not in HPCs. Interestingly, this IR- induced HSC senescence was associated with a prolonged elevation of p21Cip1/Waf1, p16Ink4a and p19ARF mRNA expression, whereas the expression of p27Kip1, p18Ink4c and p19 Ink4d mRNA was not increased. This suggests that p21Cip1/Waf1, p16Ink4a and p19ARF may play an important role in IR-induced senescence in HSCs, since their expression has been implicated in the initiation, establishment and maintenance of cellular senescence. Therefore, these findings provide valuable insights into the mechanisms underlying IR-induced long-term BM damage. This could lead to the discovery of novel molecular targets for intervention to circumvent IR-induced BM toxicity. In addition, understanding how normal HSCs senesce after IR and chemotherapy will help us to elucidate the molecular mechanisms whereby leukemia/cancer stem cells evade these cancer treatments and provide better knowledge of organismal aging.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 463-463 ◽  
Author(s):  
Ulrich Steidl ◽  
Frank Rosenbauer ◽  
Roel G.W Verhaak ◽  
Xuesong Gu ◽  
Hasan H. Otu ◽  
...  

Abstract Knockdown of the expression of the myeloid master regulator PU.1 leads to the development of an immature acute myeloid leukemia (AML) in mice. Recent reports suggest that functional inactivation of PU.1 might also play a role in human AML. However, the molecular mechanisms underlying PU.1-mediated malignant transformation are unknown. We examined leukemic PU.1 knockdown mice and found a 3-fold expansion of lin-, c-kit+, Sca1+ (KLS) hematopoietic stem cells (HSC) as compared to wildtype controls, which was not observed during the preleukemic phase. When we transplanted double-sorted leukemic KLS-HSC into NOD-SCID mice the recipients developed AML after 9–12 weeks indicating that the leukemic stem cells derive from the HSC compartment. This finding prompted us to examine the transcriptome of PU.1 knockdown preleukemic HSC to identify early transcriptional changes underlying their malignant transformation. After lineage-depletion and FACS sorting of preleukemic KLS-HSC we performed linear amplification of RNA by 2 cycles of RT-IVT and hybridized the cRNA with Affymetrix Mouse Genome 430 2.0 arrays. Principal component analysis as well as hierarchical cluster analysis clearly distinguished PU.1 knockdown and wildtype HSC. Several in-vitro targets of PU.1 such as c-Fes, BTK, TFEC, CSF2R, and Ebi3 were downregulated demonstrating that those are also affected in HSC in vivo. Differential expression of 16 genes was corroborated by qRT-PCR. Strikingly, several Jun family transcription factors including c-Jun and JunB were downregulated. Retroviral restoration of c-Jun expression in bone marrow cells of preleukemic mice rescued the PU.1-initiated myelomonocytic differentiation block in this early phase. To target cells in the leukemic stage we applied lentiviral vectors expressing c-Jun or JunB. While c-Jun did not affect leukemic proliferation, lentiviral restoration of JunB led to an 80% reduction of clonogenic growth and a loss of leukemic self-renewal capacity in serial replating assays. Expression analysis of 285 patients with AML confirmed the correlation between PU.1 and JunB downregulation and suggests its relevance in human disease. These results delineate a transcriptional pattern that precedes leukemic transformation in PU.1 knockdown HSC and demonstrate that downregulation of c-Jun and JunB contribute to the development of PU.1-induced AML by blocking differentiation (c-Jun) and increasing self-renewal (JunB). Therefore, examination of disturbed gene expression in preleukemic HSC can identify genes whose dysregulation is essential for leukemic stem cell function and are potential targets for therapeutic interventions.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 238-238 ◽  
Author(s):  
Edward Kavalerchik ◽  
Jason Gotlib ◽  
Ifat Geron ◽  
Annelie Abrahamsson ◽  
Wolfgang Wrasidlo ◽  
...  

Abstract Introduction A growing proportion of chronic myelogenous leukemia (CML) patients show evidence of disease progression. Recent research suggests that leukemia stem cells (LSC) that share phenotypic characteristics with granulocyte-macrophage progenitors (GMP) are involved in CML progression. These LSC have aberrantly gained self-renewal capacity as a result of enhanced Wnt/beta-catenin signaling. We assayed the capacity of novel Wnt/beta-catenin antagonists to inhibit CML LSC. Methods To assay the efficacy of a novel Wnt inhibitor, MC-001, HEK293 cells were transfected with a Wnt-dependent reporter gene and expression plasmid for Dsh. After 16h, the cells were treated for 24 h with MCC-001, a novel marine sponge derived inhibitor, at varying concentrations and the reporter gene activity was measured. All cells were also transfected with a b-gal reporter gene to control for transfection efficiency. To assess the effects of MCC-001 and other Wnt inhibitors on Wnt/beta-catenin induced self-renewal, hematopoietic stem cells (HSC), GMP and lineage positive cells from normal (n=8) and advanced phase CML (n=8) peripheral blood and marrow (n=8) were clone sorted with the aid of a FACS Aria into methocult media (Stem Cell Technologies) with or without Wnt inhibitors including recombinant Dkk1, lentiviral axin or MCC-001. On day 10, individual colonies were plucked and replated in new methylcellulose and the replating efficiency determined at day 10. To establish an in vivo CML LSC model, HSC, GMP and lineage positive cells were transduced with a lentiviral luciferase GFP for 48 hours and transplanted intrahepatically into newborn immunocompromised mice (RAG2−/−gamma−/−) mice that facilitate high levels of human hematopoietic progenitor engraftment. Results The HEK293 beta-catenin reporter assay revealed that the MC-001 IC50 was 2.1 microM. In comparative Wnt inhibitor replating assays (n=8), recombinant Dkk1 did not inhibit CML HSC (n=8) while lentiviral axin and MCC-001 (at 2 and 10 microM) inhibited both CML HSC and CML GMP at doses that spared normal HSC replating (Figure 1). Transplantation of CML HSC, GMP and lineage positive cells into RAG2−/−gamma−/− mice demonstrated that only CML GMP provided serial transplantation potential and thus, were enriched for the LSC population (Figure 2). Conclusions Selective Wnt/beta-catenin inhibition with a marine sponge derived beta-catenin antagonist, MCC-001, blocks in vitro replating capacity of CML LSC at doses that spare normal HSC. Current experiments focus on in vivo inhibition of LSC self-renewal with novel Wnt inhibitors in a robust CML LSC bioluminescent imaging model (Figure 2). Figure 1. Chronic Myelogenous Leukemia Stem Cell Inhibition with MCC-001: A novel β-catenin Inhibitor Figure 1. Chronic Myelogenous Leukemia Stem Cell Inhibition with MCC-001: A novel β-catenin Inhibitor Figure 2. Bioluminescent Chronic Myelogenous Leukemia Stem Cell Transplantation Model. Figure 2. Bioluminescent Chronic Myelogenous Leukemia Stem Cell Transplantation Model.


Sign in / Sign up

Export Citation Format

Share Document