Effect of information fields from written texts on cell growth and mitochondrial functions in-vitro: An exploratory study

EXPLORE ◽  
2020 ◽  
Author(s):  
Qian Feng ◽  
Yu Chen ◽  
Lin Wang ◽  
Mengmei Li ◽  
Jie Teng ◽  
...  
EXPLORE ◽  
2022 ◽  
Author(s):  
Qian Feng ◽  
Lin Wang ◽  
Yu Chen ◽  
Mengmei Li ◽  
Jie Teng ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 121 ◽  
Author(s):  
Meng Li ◽  
Ling Wang ◽  
Yijin Wang ◽  
Shaoshi Zhang ◽  
Guoying Zhou ◽  
...  

Metabolic reprogramming universally occurs in cancer. Mitochondria act as the hubs of bioenergetics and metabolism. The morphodynamics of mitochondria, comprised of fusion and fission processes, are closely associated with mitochondrial functions and are often dysregulated in cancer. In this study, we aim to investigate the mitochondrial morphodynamics and its functional consequences in human liver cancer. We observed excessive activation of mitochondrial fusion in tumor tissues from hepatocellular carcinoma (HCC) patients and in vitro cultured tumor organoids from cholangiocarcinoma (CCA). The knockdown of the fusion regulator genes, OPA1 (Optic atrophy 1) or MFN1 (Mitofusin 1), inhibited the fusion process in HCC cell lines and CCA tumor organoids. This resulted in inhibition of cell growth in vitro and tumor formation in vivo, after tumor cell engraftment in mice. This inhibitory effect is associated with the induction of cell apoptosis, but not related to cell cycle arrest. Genome-wide transcriptomic profiling revealed that the inhibition of fusion predominately affected cellular metabolic pathways. This was further confirmed by the blocking of mitochondrial fusion which attenuated oxygen consumption and cellular ATP production of tumor cells. In conclusion, increased mitochondrial fusion in liver cancer alters metabolism and fuels tumor cell growth.


2006 ◽  
Vol 175 (4S) ◽  
pp. 257-257
Author(s):  
Jennifer Sung ◽  
Qinghua Xia ◽  
Wasim Chowdhury ◽  
Shabana Shabbeer ◽  
Michael Carducci ◽  
...  

2020 ◽  
Vol 15 (2) ◽  
pp. 165-173
Author(s):  
Elaheh Amini ◽  
Mohammad Nabiuni ◽  
Seyed Bahram Behzad ◽  
Danial Seyfi ◽  
Farhad Eisvand ◽  
...  

Background: Breast carcinoma is a malignant disease that represents the most common non-skin malignancy and a chief reason of cancer death in women. Large interest is growing in the use of natural products for cancer treatment, especially with goal of suppression angiogenesis, tumor cell growth, motility, as well as invasion and metastasis with low/no toxicity. It is evident from recent patents on the anticancer properties of sesquiterpene lactones such as parthenolide. Objective: In this study, using MDA-MB-231 cells of a human breast adenocarcinoma, the effects of aguerin B, as a natural sesquiterpene lactone, has been evaluated, in terms of the expression of metastatic-related genes (Pak-1, Rac-1 and HIF-1α). Methods: Cytotoxicity of aguerin B was tested toward MDA-MB-231 breast tumor cells using MTT. Scratch assay was accomplished to evaluate the tumor cell invasion. To understand the underlying molecular basis, the mRNA expressions were evaluated by real time PCR. Results: It was found that aguerin B significantly inhibited human breast cancer cell growth in vitro (IC50 = 2μg/mL) and this effect was accompanied with a persuasive suppression on metastasis. Our results showed that aguerin B in IC50 concentration down-regulated Rac-1, Pak-1, Hif-1α and Zeb-1 transcriptional levels. Conclusion: Taken together, this study demonstrated that aguerin B possessed potential anti-metastatic effect, suggesting that it may consider as a potential multi target bio compound for treatment of breast metastatic carcinoma.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


1993 ◽  
Vol 21 (2) ◽  
pp. 206-209
Author(s):  
Anders H. G. Andrén ◽  
Anders P. Wieslander

Cytotoxicity, measured as inhibition of cell growth of cultured cell lines, is a widely used method for testing the safety of biomaterials and chemicals. One major technical disadvantage with this method is the continuous routine maintenance of the cell lines. We decided to investigate the possibility of storing stock cultures of fibroblasts (L-929) in an ordinary refrigerator as a means of reducing the routine workload. Stock cultures of the mouse fibroblast cell line L-929 were prepared in plastic vials with Eagle's minimum essential medium. The vials were stored in a refrigerator at 4–10°C for periods of 7–31 days. The condition of the cells after storage was determined as cell viability, cell growth and the toxic response to acrylamide, measured as cell growth inhibition. We found that the L-929 cell line can be stored for 2–3, weeks with a viabilty > 90% and a cell growth of about 95%, compared to L-929 cells grown and subcultured in the normal manner. The results also show that the toxic response to acrylamide, using refrigerator stored L-929 cells, corresponds to that of control L-929 cells. We concluded that it is possible to store L-929 cells in a refrigerator for periods of up to 3 weeks and still use the cells for in vitro cytotoxic assays.


2021 ◽  
Vol 22 (6) ◽  
pp. 3046
Author(s):  
Ming-Huei Chou ◽  
Hui-Ching Chuang ◽  
Yu-Tsai Lin ◽  
Ming-Hsien Tsai ◽  
Ying-Hsien Kao ◽  
...  

Patients with advanced head and neck squamous cell carcinoma (HNSCC) usually show a dismal prognosis. It is this worthwhile to develop new, effective therapeutic regimens for these patients, such as molecular targeted therapy, which is promising as an alternative or combination treatment for HNSCC. The mammalian target of rapamycin (mTOR) pathway, which plays an important role in the carcinogenesis of HNSCC, is the most frequently activated, and is thus worthy of further investigation. In this study, two human HNSCC cell lines, FaDu and SAS, were evaluated for cell growth with trypan blue staining and tumor growth using an orthotopic xenograft model. The immunohistochemical expression of mTOR in the subcutaneous xenograft model and the inhibitory effects of docetaxel on the growth and state of activation of the PI3K/mTOR pathway were also evaluated and examined by colony formation and Western blot, respectively. Cell proliferation and migration were measured by water-soluble tetrazolium salt (WST-1) and OrisTM cell migration assay, respectively. Furthermore, the effects of rapamycin and BEZ235, a phosphatidylinositol 3-kinases (PI3K) and mTOR inhibitor in combination with docetaxel or CCL20 were evaluated in the FaDu and SAS cells. The results showed that the expression of mTOR was significantly higher in the SAS and FaDu xenograft models than in the control. Docetaxel treatment significantly suppressed HNSCC cell proliferation and migration in vitro via the PI3K/mTOR/CCL-20 signaling pathway. Additionally, when administered in a dose-dependent fashion, mTOR inhibitors inhibited the growth and migration of the HNSCC cells. This combination was synergistic with docetaxel, resulting in almost complete cell growth and migration arrest. In conclusion, docetaxel significantly inhibited HNSCC cell proliferation and migration in vitro via the PI3K/mTOR/CCL-20 signaling pathway. The synergistic and additive activity of mTOR inhibitors combined with docetaxel shows potential as a new treatment strategy for HNSCC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dan Lei ◽  
Wen-Ting Yang ◽  
Peng-Sheng Zheng

AbstractHomeobox B4 (HOXB4), which belongs to the homeobox (HOX) family, possesses transcription factor activity and has a crucial role in stem cell self-renewal and tumorigenesis. However, its biological function and exact mechanism in cervical cancer remain unknown. Here, we found that HOXB4 was markedly downregulated in cervical cancer. We demonstrated that HOXB4 obviously suppressed cervical cancer cell proliferation and tumorigenic potential in nude mice. Additionally, HOXB4-induced cell cycle arrest at the transition from the G0/G1 phase to the S phase. Conversely, loss of HOXB4 promoted cervical cancer cell growth both in vitro and in vivo. Bioinformatics analyses and mechanistic studies revealed that HOXB4 inhibited the activity of the Wnt/β-catenin signaling pathway by direct transcriptional repression of β-catenin. Furthermore, β-catenin re-expression rescued HOXB4-induced cervical cancer cell defects. Taken together, these findings suggested that HOXB4 directly transcriptional repressed β-catenin and subsequently inactivated the Wnt/β-catenin signaling pathway, leading to significant inhibition of cervical cancer cell growth and tumor formation.


Sign in / Sign up

Export Citation Format

Share Document