Grain yield response and N-fertiliser recovery of maize under deficit irrigation

2005 ◽  
Vol 93 (2-3) ◽  
pp. 132-141 ◽  
Author(s):  
C. Kirda ◽  
S. Topcu ◽  
H. Kaman ◽  
A.C. Ulger ◽  
A. Yazici ◽  
...  
Water SA ◽  
2020 ◽  
Vol 46 (1 January) ◽  
Author(s):  
Agossou Gadédjisso-Tossou ◽  
Tamara Avellán ◽  
Niels Schütze

In northern Togo where rainfed maize is one of the major crops grown, agriculture is subject to frequent yield losses due to erratic rainfall. To ensure food availability and improve agricultural productivity, it is necessary to produce maize during the dry season under irrigation. A sound application of full and deficit irrigation requires a thorough understanding of the crop parameters and yield response to water. Thus, this study investigated the effect of full and deficit irrigation on maize plant above-ground biomass, leaf area index, canopy cover, plant height, and grain yield. A field experiment was carried out from December 2017 to April 2018 in northern Togo at the agronomic research institute.  Full irrigation (FI), 80% FI, and 60% FI treatments were applied. The results showed that in the late-season stage, the differences in biomass between FI and 60% FI were significant (p < 0.05). On average, FI had the greatest grain yield (2 200.4 kg/ha), while the lowest grain yield was recorded under 60% FI (1,068.3 kg/ha). The grain yield differences between FI and 60% FI were significant. Nevertheless, the grain yield differences between FI and 80% FI were not significant (p > 0.05). 80% FI had water use efficiency (WUE) (0.22 kg/m3) similar to that of FI (0.21 kg/m3), on average. The results of this study illustrate that deficit irrigation must be carefully managed since slight differences in the application volumes affect the biomass and yield of maize significantly. Under a moderate level of deficit irrigation (vegetative and reproductive growth stages) the biomass and the grain yield of maize are reduced. However, a moderate level of deficit irrigation during the vegetative growth stage could result in similar values of WUE to that of FI.


2011 ◽  
Vol 98 (5) ◽  
pp. 801-807 ◽  
Author(s):  
Harun Kaman ◽  
Cevat Kirda ◽  
Sertan Sesveren

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 756
Author(s):  
AbdAllah M. El-Sanatawy ◽  
Ahmed S. M. El-Kholy ◽  
Mohamed M. A. Ali ◽  
Mohamed F. Awad ◽  
Elsayed Mansour

Water shortage is a major environmental stress that destructively impacts maize production, particularly in arid regions. Therefore, improving irrigation management and increasing productivity per unit of water applied are needed, especially under the rising temperature and precipitation fluctuations induced by climate change. Laboratory and field trials were carried out in the present study, which were aimed at assessing the possibility of promoting maize germination, growth, grain yield and crop water productivity (CWP) using seed priming under different irrigation regimes. Two seed priming treatments, i.e., hydro-priming and hardening versus unprimed seeds, were applied under four irrigation regimes, i.e., 120, 100, 80 and 60% of estimated crop evapotranspiration (ETc). The obtained results indicated that increasing irrigation water from 100% up to 120% ETc did not significantly increase grain yield or contributing traits, while it decreased CWP. Deficit irrigation of 80 and 60% ETc gradually decreased grain yield and all attributed traits. Seed priming significantly ameliorated seedlings’ vigor as indicated by earlier germination, higher germination percentage, longer roots and shoots, and heavier fresh and dry weight than unprimed seeds with the superiority of hardening treatment. Additionally, under field conditions, seed priming significantly increased grain yield, yield contributing traits and CWP compared with unprimed treatment. Interestingly, the results reflect the role of seed priming, particularly hardening, in mitigating negative impacts of drought stress and enhancing maize growth, grain yield and attributed traits as well as CWP under deficit irrigation conditions. This was demonstrated by a significant increase in grain yield and CWP under moderate drought and severe drought conditions compared with unprimed treatment. These results highlight that efficient irrigation management and seed priming can increase maize yield and water productivity in arid environments.


1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


2014 ◽  
Vol 65 (5) ◽  
pp. 428 ◽  
Author(s):  
R. A. Reen ◽  
J. P. Thompson ◽  
T. G. Clewett ◽  
J. G. Sheedy ◽  
K. L. Bell

In Australia, root-lesion nematode (RLN; Pratylenchus thornei) significantly reduces chickpea and wheat yields. Yield losses from RLN have been determined through use of nematicide; however, nematicide does not control nematodes in Vertosol subsoils in Australia’s northern grains region. The alternative strategy of assessing yield response, by using crop rotation with resistant and susceptible crops to manipulate nematode populations, is poorly documented for chickpea. Our research tested the effectiveness of crop rotation and nematicide against P. thornei populations for assessing yield loss in chickpea. First-year field plots included canola, linseed, canaryseed, wheat and a fallow treatment, all with and without the nematicide aldicarb. The following year, aldicarb was reapplied and plots were re-cropped with four chickpea cultivars and one intolerant wheat cultivar. Highest P. thornei populations were after wheat, at 0.45–0.6 m soil depth. Aldicarb was effective to just 0.3 m for wheat and 0.45 m for other crops, and increased subsequent crop grain yield by only 6%. Canola, linseed and fallow treatments reduced P. thornei populations, but low mycorrhizal spore levels in the soil after canola and fallow treatments were associated with low chickpea yield. Canaryseed kept P. thornei populations low throughout the soil profile and maintained mycorrhizal spore densities, resulting in grain yield increases of up to 25% for chickpea cultivars and 55% for wheat when pre-cropped with canaryseed compared with wheat. Tolerance indices for chickpeas based on yield differences after paired wheat and canaryseed plots ranged from 80% for cv. Tyson to 95% for cv. Lasseter and this strategy is recommended for future use in assessing tolerance.


1977 ◽  
Vol 28 (2) ◽  
pp. 165 ◽  
Author(s):  
RA Fischer ◽  
I Aguilar ◽  
DR Laing

Experiments to study the effect of grain number per sq metre on kernel weight and grain yield in a high-yielding dwarf spring wheat (Triticum aestivum cv. Yecora 70) were conducted in three seasons (1971–1973) under high-fertility irrigated conditions in north-western Mexico. Crop thinning, shading and carbon dioxide fertilization (reported elsewhere), and crowding treatments, all carried out at or before anthesis, led to a wide range in grain numbers (4000 to 34,000/m2). Results indicated the response of grain yield to changing sink size (grains per sq metre), with the post-anthesis environment identical for all crops each year, and with all but the thinner crops intercepting most of the post-anthesis solar radiation. Kernel weight fell linearly with increase in grain number over the whole range of grain numbers studied, but the rate of fall varied with the season. Grain yield, however, increased, reaching a maximum at grain numbers well above those of crops grown with optimal agronomic management but without manipulation. It was concluded that the grain yield in normal crops was limited by both sink and post-anthesis source. There was some doubt, however, as to the interpretation of results from crowded crops, because of likely artificial increases in crop respiration on the one hand, and on the other, in labile carbohydrate reserves in the crops at anthesis. Also deterioration in grain plumpness (hectolitre weight) complicates the simple inference that further gains in yield can come from increased grain numbers alone.


Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 341 ◽  
Author(s):  
Craig A. Scanlan ◽  
Ross F. Brennan ◽  
Mario F. D'Antuono ◽  
Gavin A. Sarre

Interactions between soil pH and phosphorus (P) for plant growth have been widely reported; however, most studies have been based on pasture species, and the agronomic importance of this interaction for acid-tolerant wheat in soils with near-sufficient levels of fertility is unclear. We conducted field experiments with wheat at two sites with acid soils where lime treatments that had been applied in the 6 years preceding the experiments caused significant changes to soil pH, extractable aluminium (Al), soil nutrients and exchangeable cations. Soil pH(CaCl2) at 0–10cm was 4.7 without lime and 6.2 with lime at Merredin, and 4.7 without lime and 6.5 with lime at Wongan Hills. A significant lime×P interaction (P<0.05) for grain yield was observed at both sites. At Merredin, this interaction was negative, i.e. the combined effect of soil pH and P was less than their additive effect; the difference between the dose–response curves without lime and with lime was greatest at 0kgPha–1 and the curves converged at 32kgPha–1. At Wongan Hills, the interaction was positive (combined effect greater than the additive effect), and lime application reduced grain yield. The lime×P interactions observed are agronomically important because different fertiliser P levels were required to maximise grain yield. A lime-induced reduction in Al phytotoxicity was the dominant mechanism for this interaction at Merredin. The negative grain yield response to lime at Wongan Hills was attributed to a combination of marginal soil potassium (K) supply and lime-induced reduction in soil K availability.


Sign in / Sign up

Export Citation Format

Share Document