Protective effect of diphlorethohydroxycarmalol isolated from Ishige okamurae against UVB-induced damage in vitro in human dermal fibroblasts and in vivo in zebrafish

2020 ◽  
Vol 136 ◽  
pp. 110963 ◽  
Author(s):  
Lei Wang ◽  
Hyun Soo Kim ◽  
Jae Young Oh ◽  
Jun Geon Je ◽  
You-Jin Jeon ◽  
...  
Marine Drugs ◽  
2018 ◽  
Vol 16 (7) ◽  
pp. 239 ◽  
Author(s):  
Lei Wang ◽  
WonWoo Lee ◽  
Jae Oh ◽  
Yong Cui ◽  
BoMi Ryu ◽  
...  

Our previous study evaluated the antioxidant activities of sulfated polysaccharides from Celluclast-assisted extract of Hizikia fusiforme (HFPS) in vitro in Vero cells and in vivo in zebrafish. The results showed that HFPS possesses strong antioxidant activity and suggested the potential photo-protective activities of HFPS. Hence, in the present study, we investigated the protective effects of HFPS against ultraviolet (UV) B-induced skin damage in vitro in human dermal fibroblasts (HDF cells). The results indicate that HFPS significantly reduced intracellular reactive oxygen species (ROS) level and improved the viability of UVB-irradiated HDF cells in a dose-dependent manner. Furthermore, HFPS significantly inhibited intracellular collagenase and elastase activities, remarkably protected collagen synthesis, and reduced matrix metalloproteinases (MMPs) expression by regulating nuclear factor kappa B (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPKs) signaling pathways in UVB-irradiated HDF cells. These results suggest that HFPS possesses strong UV protective effect, and can be a potential ingredient in the pharmaceutical and cosmetic industries.


2004 ◽  
Vol 379 (2) ◽  
pp. 351-358 ◽  
Author(s):  
Daniela KESSLER-BECKER ◽  
Thomas KRIEG ◽  
Beate ECKES

In vivo, fibroblasts reside in connective tissues, with which they communicate in a reciprocal way. Such cell–extracellular matrix interactions can be studied in vitro by seeding fibroblasts in collagen lattices. Depending upon the mechanical properties of the system, fibroblasts are activated to assume defined phenotypes. In the present study, we examined a transcriptional profile of primary human dermal fibroblasts cultured in a relaxed collagen environment and found relative induction (>2-fold) of 393 out of approx. 7100 transcripts when compared with the same system under mechanical tension. Despite down-regulated proliferation and matrix synthesis, cells did not become generally quiescent, since they induced transcription of numerous other genes including matrix metalloproteinases (MMPs) and growth factors/cytokines. Of particular interest was the induction of gene transcripts encoding pro-inflammatory mediators, e.g. cyclo-oxygenase-2 (COX-2), and interleukins (ILs)-1 and -6. These are apparently regulated in a hierarchical fashion, since the addition of IL-1 receptor antagonist prevented induction of COX-2, IL-1 and IL-6, but not that of MMP-1 or keratinocyte growth factor (KGF). Our results suggest strongly that skin fibroblasts are versatile cells, which adapt to their extracellular environment by displaying specific phenotypes. One such phenotype, induced by a mechanically relaxed collagen environment, is the ‘pro-inflammatory’ fibroblast. We propose that fibroblasts that are embedded in a matrix environment can actively participate in the regulation of inflammatory processes.


1976 ◽  
Vol 144 (5) ◽  
pp. 1188-1203 ◽  
Author(s):  
A E Postlethwaite ◽  
R Snyderman ◽  
A H Kang

A quantitative assay that measures fibroblast chemotaxis in vitro is described. Application of this technique has revealed that peripheral blood lymphocytes stimulated by antigen or mitogen in vitro produce a factor that is chemotactic for human dermal fibroblasts. This lymphocyte-derived chemotactic factor for fibroblasts (LDCF-F) is different from the lymphokine that is chemotactic for monocytes or macrophages. Macrophages are required for the generation of LDCF-F by T lymphocytes stimulated by phytohemagglutinin. The fibroblast chemotactic factor is heat stable (56 degrees C for 30 min), trypsin sensitive, and neuraminidase resistant. LDCF-F could function to attact connective tissue fibroblasts to sites at which cell-mediated immune reactions are occurring in vivo.


1981 ◽  
Vol 153 (2) ◽  
pp. 494-499 ◽  
Author(s):  
A E Postlethwaite ◽  
J Keski-Oja ◽  
G Balian ◽  
A H Kang

Plasma and cell-derived fibronectin are potent chemoattractants for human dermal fibroblasts in vitro. The chemotactic property of fibronectin resides in a major 140,000-mol wt non-gelatin-binding fragment of the native molecule. Human monocytes and neutrophils do not recognize fibronectin as a chemotactic stimulus. These findings suggest that fibronectin and perhaps certain fragments of fibronectin may function in vivo as a specific chemoattractant for fibroblasts and could, therefore, induce directional migration of fibroblasts to sites of tissue injury, remodeling or morphogenesis.


2012 ◽  
Vol 602-604 ◽  
pp. 1196-1199
Author(s):  
Nuraly Akimbekov ◽  
Zulhair A. Mansurov ◽  
J. Jandosov ◽  
Ilya E. Digel ◽  
Mathias Gossmann ◽  
...  

The carbonized rice husk (CRH) was evaluated for its wound healing activity in rats using excision models. In this study, the influences of CRH on wound healing in rat skin in vivo and cellular behavior of human dermal fibroblasts in vitro were investigated. The obtained results showed that the CRH treatment promoted wound epithelization in rats and exhibited moderate inhibition of cell proliferation in vitro. CRH with lanolin oil treated wounds were found to epithelize faster as compared to controls.


2005 ◽  
Vol 288-289 ◽  
pp. 257-260
Author(s):  
Dong Lim Seol ◽  
Won Hee Jang ◽  
Sung Jae Lee ◽  
Young Il Yang

The goal of this study was to investigate effects of fibrin reinforcement of collagen sponges on fibroblasts-mediated contraction and in vivo tissue regeneration, especially angiogenesis. Human dermal fibroblasts (HDFs)-populated collagen sponges reinforced with or without fibrin were cultivated via the free-floating method in vitro. They were then evaluated using xenogeneic implantation into nude mice. The HDFs-populated collagen sponges reinforced with fibrin exhibited significantly decreased HDFs-mediated contraction in vitro (p<0.05). Microvascular and cellular densities of the collagen sponges were significantly higher with fibrin than without (p<0.01). Cell ingrowths, neovascularization, and deposition of ECM matrix were more evenly distributed in the fibrin-reinforced collagen matrices. The results demonstrated that fibrin reinforcement of porous collagen sponges can reduce cell-mediated contraction in vitro while enhancing functional integration with surrounding tissue in vivo.


2019 ◽  
Vol 40 (8) ◽  
pp. 904-913 ◽  
Author(s):  
Yuda Xu ◽  
Mingwu Deng ◽  
Yizuo Cai ◽  
Hongjie Zheng ◽  
Xiangsheng Wang ◽  
...  

Abstract Background Although adipose-derived stem cells (ADSCs) and nanofat exert antiaging effects on skin, they contain cellular components that have certain limitations in clinical practice. Cell-free fat extract (Ceffe) is a fraction purified from nanofat through removal of cellular components and lipid remnants that contains various growth factors. Objectives The purpose of this study was to evaluate the effects of Ceffe on cultured human dermal fibroblasts in vitro and on the dermis of nude mice in vivo. Methods In the in vitro study, human dermal fibroblasts were cultured with Ceffe for 72 hours, followed by flow cytometry measurement of cell proliferation and cell cycle. In the in vivo study, different concentrations of Ceffe were injected into the dorsal skin of nude mice for 4 weeks. The thickness of the dermis; proliferation of cells; density of the capillary; and expressions of type I and III collagen (Col-1 and Col-3), matrix metalloproteinase-1, matrix metalloproteinase-3, tissue inhibitor of metalloproteinase-1, and tissue inhibitor of metalloproteinase-3 were measured through histologic and Western blot analyses. Results Ceffe significantly increased cell proliferation in cultured dermal fibroblasts. In the mouse skin, Ceffe significantly increased the thickness of the dermis, number of proliferating cells, density of the capillary, and expressions of Col-1 and Col-3. Conclusions Ceffe increased the dermal thickness of nude mice, possibly by enhancing angiogenesis and extracellular matrix production, and can therefore be used for skin rejuvenation.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1055 ◽  
Author(s):  
Lei Wang ◽  
Hyun Soo Kim ◽  
Jun-Geon Je ◽  
Jae Young Oh ◽  
Young-Sang Kim ◽  
...  

Particulate matters (PM), the main contributor to air pollution, have become a serious issue that threatens human’s health. Skin is the largest organ in humans, as well as the primary organ exposed to PM. Overexposure of PM induces skin damage. Diphlorethohydroxycarmalol (DPHC), an algal polyphenol with the potential of skin protection, has been isolated from the edible brown seaweed Ishige okamurae. The purpose of the present study is to investigate the protective effect of DPHC against PM (ERM-CZ100)-induced skin damage in human dermal fibroblasts (HDF) cells. The results indicated that DPHC significantly and dose-dependently reduced intracellular reactive oxygen species generation in HDF cells. In addition, DPHC significantly induced collagen synthesis and inhibited collagenase activity in ERM-CZ100-stimulated HDF cells. Further study demonstrated that DPHC remarkably reduced the expression of human matrix metalloproteinases through regulation of nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinases signaling pathways in ERM-CZ100-stimulated HDF cells. This study suggested that DPHC is a potential candidate to protect skins against PM-induced damage, and it could be used as an ingredient in pharmaceutical and cosmeceutical industries.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 609 ◽  
Author(s):  
Ludmila Yarmolinsky ◽  
Arie Budovsky ◽  
Leonid Yarmolinsky ◽  
Boris Khalfin ◽  
Vladimir Glukhman ◽  
...  

Phlomis viscosa Poiret is an evergreen shrub growing in Israel, Turkey, Lebanon, and Syria with acknowledged pro-wound healing (WH) properties. In this study, we evaluated the pro-WH potential of selected compounds found in this plant. Among the pro-WH compounds (identified by us) was a combination of three chemicals—diosmin, 1-octen-3-ol, and himachala-2,4-diene which enhanced WH significantly both in in vitro and in vivo models. The determined phytochemicals combination could be used for the treatment of chronic wounds. The effect of the extracts, diosmin, 1-octen-3-ol on the secretion of pro-inflammatory cytokines, IL-6 (A) and IL-8 (B) by human dermal fibroblasts was significant (p < 0.001). In addition, the beneficial effect of extracts of P. viscosa and its phytochemicals on WH was evidenced by inhibiting the growth of several WH delaying microorganisms.


Sign in / Sign up

Export Citation Format

Share Document