scholarly journals Protective Effect of Diphlorethohydroxycarmalol Isolated from Ishige okamurae Against Particulate Matter-Induced Skin Damage by Regulation of NF-κB, AP-1, and MAPKs Signaling Pathways In Vitro in Human Dermal Fibroblasts

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1055 ◽  
Author(s):  
Lei Wang ◽  
Hyun Soo Kim ◽  
Jun-Geon Je ◽  
Jae Young Oh ◽  
Young-Sang Kim ◽  
...  

Particulate matters (PM), the main contributor to air pollution, have become a serious issue that threatens human’s health. Skin is the largest organ in humans, as well as the primary organ exposed to PM. Overexposure of PM induces skin damage. Diphlorethohydroxycarmalol (DPHC), an algal polyphenol with the potential of skin protection, has been isolated from the edible brown seaweed Ishige okamurae. The purpose of the present study is to investigate the protective effect of DPHC against PM (ERM-CZ100)-induced skin damage in human dermal fibroblasts (HDF) cells. The results indicated that DPHC significantly and dose-dependently reduced intracellular reactive oxygen species generation in HDF cells. In addition, DPHC significantly induced collagen synthesis and inhibited collagenase activity in ERM-CZ100-stimulated HDF cells. Further study demonstrated that DPHC remarkably reduced the expression of human matrix metalloproteinases through regulation of nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinases signaling pathways in ERM-CZ100-stimulated HDF cells. This study suggested that DPHC is a potential candidate to protect skins against PM-induced damage, and it could be used as an ingredient in pharmaceutical and cosmeceutical industries.

Marine Drugs ◽  
2018 ◽  
Vol 16 (7) ◽  
pp. 239 ◽  
Author(s):  
Lei Wang ◽  
WonWoo Lee ◽  
Jae Oh ◽  
Yong Cui ◽  
BoMi Ryu ◽  
...  

Our previous study evaluated the antioxidant activities of sulfated polysaccharides from Celluclast-assisted extract of Hizikia fusiforme (HFPS) in vitro in Vero cells and in vivo in zebrafish. The results showed that HFPS possesses strong antioxidant activity and suggested the potential photo-protective activities of HFPS. Hence, in the present study, we investigated the protective effects of HFPS against ultraviolet (UV) B-induced skin damage in vitro in human dermal fibroblasts (HDF cells). The results indicate that HFPS significantly reduced intracellular reactive oxygen species (ROS) level and improved the viability of UVB-irradiated HDF cells in a dose-dependent manner. Furthermore, HFPS significantly inhibited intracellular collagenase and elastase activities, remarkably protected collagen synthesis, and reduced matrix metalloproteinases (MMPs) expression by regulating nuclear factor kappa B (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPKs) signaling pathways in UVB-irradiated HDF cells. These results suggest that HFPS possesses strong UV protective effect, and can be a potential ingredient in the pharmaceutical and cosmetic industries.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 352
Author(s):  
Lei Wang ◽  
Jun-Geon Je ◽  
Hye-Won Yang ◽  
You-Jin Jeon ◽  
Seungheon Lee

Ultraviolet (UV) irradiation is considered to be the primary environmental factor that causes skin damage. In the present study, we investigated the protective effect of dieckol (DK), a compound isolated from the brown seaweed Ecklonia cava, against UVB-induced skin damage in human dermal fibroblasts (HDF cells). The results indicated that DK effectively inhibited the activity of collagenase. DK remarkably reduced the intracellular reactive oxygen species level and improved the viability of UVB-irradiated HDF cells. Besides, DK significantly and dose-dependently improved collagen synthesis and inhibited intracellular collagenase activity in UVB-irradiated HDF cells. In addition, DK markedly reduced the expression of proinflammatory cytokines and matrix metalloproteinases. Further analyses revealed that these processes were mediated through the regulation of nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinase signaling pathways in the UVB-irradiated HDF cells. In conclusion, these results indicate that DK possesses strong in vitro photoprotective effects and therefore has the potential to be used as an ingredient in the cosmeceutical industry.


2020 ◽  
Vol 21 (13) ◽  
pp. 4619
Author(s):  
Yuling Ding ◽  
Chanipa Jiratchayamaethasakul ◽  
Seung-Hong Lee

Ultraviolet radiation (UV) is a major causative factor of DNA damage, inflammatory responses, reactive oxygen species (ROS) generation and a turnover of various cutaneous lesions resulting in skin photoaging. The purpose of this study is to investigate the protective effect of protocatechuic aldehyde (PA), which is a nature-derived compound, against UVA-induced photoaging by using human dermal fibroblast (HDF) cells. In this study, our results indicated that PA significantly reduced the levels of intracellular ROS, nitric oxide (NO), and prostaglandins-E2 (PGE2) in UVA-irradiated HDF cells. It also inhibited the levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression. Besides, PA significantly suppressed the expression of matrix metalloproteinases-1 (MMP-1) and pro-inflammatory cytokines and promoted collagen synthesis in the UVA-irradiated HDF cells. These events occurred through the regulation of activator protein 1 (AP-1), nuclear factor-κB (NF-κB), and p38 signaling pathways in UVA-irradiated HDF cells. Our findings suggest that PA enhances the protective effect of UVA-irradiated photoaging, which is associated with ROS scavenging, anti-wrinkle, and anti-inflammatory activities. Therefore, PA can be a potential candidate for the provision of a protective effect against UVA-stimulated photoaging in the pharmaceutical and cosmeceutical industries.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1669
Author(s):  
Hye Shin Ahn ◽  
Hyun Jae Kim ◽  
Changseon Na ◽  
Dae Sik Jang ◽  
Yu-Kyong Shin ◽  
...  

Skin aging induced by ultraviolet (UV) irradiation increases expression of matrix metalloproteinase-1 (MMP-1) and destroys collagen fibers, as a result accelerating wrinkle formation. Natural products have been received scientific attention as utilized agents against photoaging. The aim of this study was to investigate the protective effect of Adenocaulon himalaicum Edgew. extract (AHE) against ultraviolet B (UVB)-induced skin damage, and to explain the underlying mechanisms in human dermal fibroblasts and epidermal keratinocytes. AHE effectively protects skin photoaging by preventing collagen degradation through MMP-1 inhibition via the MAPK/AP-1 signaling pathway. AHE significantly increased the expression of skin hydration factors, such as filaggrin, involucrin, loricrin, and caspase-14. To find how AHE possesses a direct impact on cellular activities, we identified neochlorogenic acid as a bioactive component of AHE for the first time. Neochlorogenic acid showed the anti-photoaging effect through ameliorating UVB-induced collagen degradation, reinforcing the skin barrier. Like the AHE-regulating mechanism, neochlorogenic acid modulates the MAPK/AP-1 signaling pathway and skin hydration factors. Taken together, these results suggest that AHE and neochlorogenic acid are well-qualified candidate for enhancing the conditions of photoaged skin.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 912
Author(s):  
Mirae An ◽  
Hyungkeun Kim ◽  
Joo-Myung Moon ◽  
Hyun-Soo Ko ◽  
Paul Clayton ◽  
...  

Ultraviolet A (UVA) is a risk factor for photoaging and wrinkle formation. Zizania latifolia is an herbaceous perennial plant. It contains many bioactive compounds such as tricin that show antioxidative and anti-inflammatory effects. The aim of this study was to investigate the antiwrinkle effect of a mixture of hydrolytic enzyme (cellulase, hemicellulase and pectinase)-treated Z. latifolia extract (ZLE) and tricin on UVA-irradiated human dermal fibroblasts (HDFs) and SKH-1 hairless mice. Treatment of UVA-irradiated HDF cells with ZLE and tricin significantly decreased UVA induced-plasma membrane rupture, generation of ROS, expression levels of total and secreted lysosomal associated membrane protein (LAMP-1), cathepsin B and metalloproteinases (MMPs) and inhibited NF-κB activation. In the animal study, UVA-damaged epidermal and dermal tissues were repaired by the ZLE and tricin treatments. Administration of ZLE or tricin to UVA-irradiated animals recovered skin surface moisture and collagen fiber in dermal tissue. Treatment of ZLE or tricin decreased wrinkle formation, secretion of MMPs and expression levels of vascular endothelial growth factor (VEGF) and cathepsin B, and increased the expression level of collagen-1 in UVA-irradiated animals. Overall, the ZLE and tricin treatments decreased the skin damage induced by UVA irradiation via inhibition of lysosomal exocytosis and ROS generation. Therefore, ZLE and tricin are promising as antiwrinkle and antiphotoaging agents.


2013 ◽  
Vol 16 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Eunson Hwang ◽  
Sang-Yong Park ◽  
Zheng-wang Sun ◽  
Heon-Sub Shin ◽  
Don-Gil Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document