scholarly journals Broiler Farms and Carcasses Are an Important Reservoir of Multi-Drug Resistant Escherichia coli in Ecuador

2020 ◽  
Vol 7 ◽  
Author(s):  
David Ortega-Paredes ◽  
Sofía de Janon ◽  
Fernando Villavicencio ◽  
Katherine Jaramillo Ruales ◽  
Kenny De La Torre ◽  
...  

Antimicrobial resistance (AMR) is a major health threat for public and animal health in the twenty-first century. In Ecuador, antibiotics have been used by the poultry industry for decades resulting in the presence of multi-drug resistant (MDR) bacteria in the poultry meat production chain, with the consequent risk for public health. This study evaluated the prevalence of ESBL/AmpC and mcr genes in third-generation cephalosporin-resistant Escherichia coli (3GC-R E. coli) isolated from broiler farms (animal component), broiler carcasses (food component), and human enteritis (human component) in Quito-Ecuador. Samples were collected weekly from November 2017 to November 2018. For the animal, food, and human components, 133, 335, and 302 samples were analyzed, respectively. Profiles of antimicrobial resistance were analyzed by an automated microdilution system. Resistance genes were studied by PCR and Sanger sequencing. From all samples, 122 (91.7%), 258 (77%), and 146 (48.3%) samples were positive for 3GC-R E. coli in the animal, food, and human components, respectively. Most of the isolates (472/526, 89.7%) presented MDR phenotypes. The ESBL blaCTX-M-55, blaCTX-M-3, blaCTX-M-15, blaCTX-M-65, blaCTX-M-27, and blaCTX-M-14 were the most prevalent ESBL genes while blaCMY-2 was the only AmpC detected gene. The mcr-1 gene was found in 20 (16.4%), 26 (10.1%), and 3 (2.1%) of isolates from animal, food, and human components, respectively. The implication of poultry products in the prevalence of ESBL/AmpC and mcr genes in 3GC-R must be considered in the surveillance of antimicrobial resistance.

2020 ◽  
Vol 83 (10) ◽  
pp. 1673-1678
Author(s):  
SEOKHWAN KIM ◽  
HANSOL KIM ◽  
YONGHOON KIM ◽  
MIGYEONG KIM ◽  
HYOSUN KWAK ◽  
...  

ABSTRACT Antimicrobial-resistant bacteria in poultry meat pose a threat to public health. This article is the first to report the prevalence of antimicrobial-resistant Escherichia coli in retail poultry meat labeled with various claims of antibiotic use in Korea. A total of 719 E. coli strains were isolated from 1,107 raw poultry (chicken and duck) meat samples purchased from nationwide retail stores between 2017 and 2019. All strains were tested for antimicrobial susceptibility with a broth microdilution method. The prevalence of antimicrobial-resistant E. coli in chicken was significantly higher than that in duck for almost all antibiotics tested, and 87.9% of E. coli strains in chicken samples were multidrug resistant. The most prevalent types of antimicrobial resistance in these E. coli strains from poultry meat were to nalidixic acid (75.7%), ampicillin (69.1%), and tetracycline (64.0%), consistent with national sales data for veterinary antibiotics in the Korean poultry production industry. Organic or antibiotic-free and conventional chicken products were equally likely to be contaminated with antimicrobial-resistant E. coli. Contamination may occur during slaughtering and subsequent processing, and antibiotic use is permitted in certain cases under organic or antibiotic-free poultry standards. Therefore, close surveillance is required throughout the chicken production chain to prevent the spread of antimicrobial-resistant E. coli strains. HIGHLIGHTS


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Pouya Reshadi ◽  
Fatemeh Heydari ◽  
Reza Ghanbarpour ◽  
Mahboube Bagheri ◽  
Maziar Jajarmi ◽  
...  

Abstract Background Transmission of antimicrobial resistant and virulent Escherichia coli (E. coli) from animal to human has been considered as a public health concern. This study aimed to determine the phylogenetic background and prevalence of diarrheagenic E. coli and antimicrobial resistance in healthy riding-horses in Iran. In this research, the genes related to six main pathotypes of E. coli were screened. Also, genotypic and phenotypic antimicrobial resistance against commonly used antibiotics were studied, then phylo-grouping was performed on all the isolates. Results Out of 65 analyzed isolates, 29.23 % (n = 19) were determined as STEC and 6.15 % (n = 4) as potential EPEC. The most prevalent antimicrobial resistance phenotypes were against amoxicillin/clavulanic acid (46.2 %) and ceftriaxone (38.5 %). blaTEM was the most detected resistance gene (98.4 %) among the isolates and 26.15 % of the E. coli isolates were determined as multi-drug resistant (MDR). Three phylo-types including B1 (76.92 %), A (13.85 %) and D (3.08 %) were detected among the isolates. Conclusions Due to the close interaction of horses and humans, these findings would place emphasis on the pathogenic and zoonotic potential of the equine strains and may help to design antimicrobial resistance stewardship programs to control the dissemination of virulent and multi-drug resistant E. coli strains in the community.


2020 ◽  
Vol 6 (1) ◽  
pp. 1-5
Author(s):  
Natapol Pumipuntu ◽  
Sangkom Pumipuntu

Background and Aim: The problem of antimicrobial resistance of bacteria in both humans and animals is an important public health concern globally, which is likely to increase, including in Thailand, where carbapenem-resistant Enterobacteriaceae (CRE), such as Escherichia coli, are of particular concern. They are pathogens found in the gastrointestinal tract of humans and other animals as well as in the environment. They may cause opportunistic infection and are often resistant to antibiotics in various fields especially in animal husbandry, such as pets or livestock farms. This study aimed to investigate the occurrence of carbapenem-resistant E. coli from water samples of smallholder dairy farms in Saraburi and Maha Sarakham, Thailand. Materials and Methods: Sixty-four water samples were collected from 32 dairy farms in Kaeng Khoi district, Muak Lek district, and Wang Muang district of Saraburi Province, and Kantharawichai district and Mueang district of Maha Sarakham Province, Thailand. All samples were cultured and isolated for E. coli by biochemical tests. All E. coli isolates were tested for drug susceptibility using imipenem, meropenem, and drug resistance genes of carbapenemases such as blaNDM, blaIMP, and blaOXA48 of drug-resistant E. coli isolates detected by polymerase chain reaction (PCR) technique. Results: A total of 182 E. coli isolates were found (140 and 42 isolates from Saraburi and Maha Sarakham, respectively). Drug sensitivity tests found that two isolates of E. coli from water in Kaeng Khoi were resistant to imipenem; therefore, the incidence of E. coli resistance to carbapenem was 1.43% of Saraburi Province. On the other hand, there was no incidence of drug-resistant E. coli in Maha Sarakham. In addition, the detection of the drug-resistant gene of E. coli in both isolates by PCR showed the expression of blaNDM. Conclusion: This study reports E. coli resistance to antimicrobial drugs on livestock farms. It can be considered to be the first report of E. coli CRE detection in a dairy farm at Saraburi, which should be the subject of further extended study.


2020 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Anna Vidal ◽  
Laia Aguirre ◽  
Chiara Seminati ◽  
Montse Tello ◽  
Noelia Redondo ◽  
...  

Escherichia coli is considered one of the most common agents associated with neonatal diarrhea in piglets. The aim of this work was to characterize the pathogenic and antimicrobial resistance (AMR) profiles of 122 E. coli strains isolated from pigs suffering diarrhea (n = 94) and pigs without diarrhea (n = 28) of 24 farms in Spain. Virulence factors, toxins and AMR (ESBL and colistin) genes and AMR phenotypes of E. coli isolates were analyzed. Low prevalence of pathogenic E. coli strains (26%) was found in both groups. However, ETEC and VTEC strains were more frequently isolated from diarrheic piglets. Irrespectively of diarrhea occurrence, 97.5% of the strains showed a multidrug-resistance (MDR) profile to aminopenicillins, sulfonamides and tetracyclines. It was found that 22% of E. coli was CTX-M+, with CTX-M-14 being the principal allelic variant. Remarkably, 81.5% of CTX-M+ strains were isolated from diarrheic animals and presented an extended MDR profile to aminopenicillins, quinolones and aminoglycosides. Finally, low frequencies of colistin resistance genes mcr-1 (4/122) and mcr-4 (1/122) were found. MDR E. coli strains are circulating in pig farms of Spain, representing a serious threat to animal and public health. More appropriate diagnostic approaches (genetic and AMR phenotypic analysis) should be implemented in animal health to optimize antibiotic treatments.


2003 ◽  
Vol 66 (5) ◽  
pp. 780-786 ◽  
Author(s):  
S. M. AVERY ◽  
S. BUNCIC

Shiga toxin (Stx)–producing Escherichia coli O157 isolates (n = 123) were divided into groups according to origin, genotype (pulsed-field gel electrophoresis [PFGE] type, or ribotype), type of Stx produced, or phage type (PT). The survival rate ([number of CFU after 24 h of drying/number of CFU before drying] × 100) for each isolate was determined in triplicate after drying on concrete for 24.0 h. The overall mean survival rate among the 123 E. coli O157 isolates studied was 22.9%, but there was a wide range of responses to drying on concrete, with a minimum of 1.2% and a maximum of 61.9% of the initial inocula being recovered after drying. Among the groups, those isolates that originated from cases of human disease were, on average, significantly more sensitive (P < 0.001) to drying (with a mean survival rate of 15.3%) than isolates from the other three sources (with mean survival rates of 27.7, 26.0, and 22.9% for meats, bovine or ovine feces, and bovine hides, respectively). When the isolates were grouped by genotype, three of the PFGE types were, on average, significantly more resistant to drying than two other PFGE types were, and similarly, significant differences in average resistance to drying between groups of E. coli O157 with different ribotypes were seen. There were no differences between the abilities of isolates producing different Stxs (Stx 1 or Stx 1 and Stx 2) to survive drying. E. coli O157 isolates of PT4, PT21/28, and PT32 survived drying on concrete better than groups of other PTs did. Since the E. coli O157 isolates had various abilities to survive drying on concrete, drying could contribute to a kind of E. coli O157 natural selection along the meat chain. This possibility may have significant meat safety implications if a range of E. coli O157 isolates are simultaneously exposed to drying at any point along the meat production chain. Those E. coli O157 isolates that are more able to survive drying could be more likely to pass farther along the meat chain and ultimately reach consumers.


2020 ◽  
Vol 8 (7) ◽  
pp. 1048 ◽  
Author(s):  
Beilei Ge ◽  
Kelly J. Domesle ◽  
Stuart A. Gaines ◽  
Claudia Lam ◽  
Sonya M. Bodeis Jones ◽  
...  

The role animal food plays in the introduction of antimicrobial-resistant bacteria into the human food chain is not well understood. We conducted an analysis of 1025 samples (647 pet food and 378 animal feed) collected across the United States during 2005–2011 for two indicator organisms (Escherichia coli and Enterococcus spp.). The overall prevalence ranged from 12.5% for E. coli to 45.2% for Enterococcus spp., and 11.2% of samples harbored both organisms. Regardless of bacterial genus, animal feed had significantly higher prevalence than pet food (p < 0.001). A general downward trend in prevalence was observed from 2005 to 2009 followed by an upward trend thereafter. Among E. coli isolates (n = 241), resistance was highest to tetracycline (11.2%) and below 5% for fourteen other antimicrobials. Among Enterococcus spp. isolates (n = 1074), Enterococcus faecium (95.1%) was the predominant species. Resistance was most common to tetracycline (30.1%) and ciprofloxacin (10.7%), but below 10% for thirteen other antimicrobials. Multidrug-resistant organisms were observed among both E. coli and Enterococcus spp. isolates at 3.3%. Compared to National Antimicrobial Resistance Monitoring System (NARMS) 2011 retail meat and animal data, the overall resistance for both organisms was much lower in animal food. These findings help establish a historic baseline for the prevalence and antimicrobial resistance among U.S. animal food products and future efforts may be needed to monitor changes over time.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nicolle Lima Barbieri ◽  
Ramon Loureiro Pimenta ◽  
Dayanne Araujo de Melo ◽  
Lisa K. Nolan ◽  
Miliane Moreira Soares de Souza ◽  
...  

Colisitin-associated resistance in bacteria of food producing animals has gained significant attention with the mcr gene being linked with resistance. Recently, newer variants of mcr have emerged with more than nine variants currently recognized. Reports of mcr associated resistance in Escherichia coli of poultry appear to be relatively limited, but its prevalence requires assessment since poultry is one of the most important and cheapest sources of the world’s protein and the emergence of resistance could limit our ability to treat disease outbreaks. Here, 107 E. coli isolates from production poultry were screened for the presence of mcr 1–9. The isolates were collected between April 2015 and June 2016 from broiler chickens and free-range layer hens in Rio de Janeiro, Brazil. All isolates were recovered from the trachea and cloaca of healthy birds and an additional two isolates were recovered from sick birds diagnosed with colibacillosis. All isolates were screened for the presence of mcr-1 to 9 using PCR and Sanger sequencing for confirmation of positive genes. Additionally, pulse field gel electrophoresis (PFGE) analysis, avian fecal E. coli (APEC) virulence associated gene screening, plasmid replicon typing and antimicrobial resistance phenotype and resistance gene screening, were also carried out to further characterize these isolates. The mcr-1 gene was detected in 62 (57.9%) isolates (61 healthy and 1 APEC) and the mcr-5 gene was detected in 3 (2.8%) isolates; mcr-2, mcr-3, mcr-4, mcr-6, mcr-7, mcr-8, and mcr-9 were not detected in any isolate. In addition, mcr 1 and 5 positive isolates were phenotypically resistant to colistin using the agar dilution assay (&gt; 8ug/ml). PFGE analysis found that most of the isolates screened had unique fingerprints suggesting that the emergence of colistin resistance was not the result of clonal dissemination. Plasmid replicon types IncI2, FIB, and B/O were found in 38, 36, and 34% of the mcr positive isolates and were the most prevalent replicon types detected; tetA and tetB (32 and 26%, respectively) were the most prevalent antimicrobial resistance genes detected and iutA, was the most prevalent APEC virulence associated gene, detected in 50% of the isolates. Approximately 32% of the isolates examined could be classified as APEC-like, based on the presence of 3 or more genes of APEC virulence associated path panel (iroN, ompT, hlyF, iss, iutA). This study has identified a high prevalence of mcr-1 in poultry isolates in Brazil, suggesting that animal husbandry practices could result in a potential source of resistance to the human food chain in countries where application of colistin in animal health is practiced. Emergence of the mcr gene and associated colisitin resistance in production poultry warrants continued monitoring from the animal health and human health perspective.


2019 ◽  
Author(s):  
Liseth Salinas ◽  
Paúl Cárdenas ◽  
Timothy J. Johnson ◽  
Karla Vasco ◽  
Jay Graham ◽  
...  

ABSTRACTThe increased prevalence of antimicrobial resistance (AMR) among Enterobacteriaceae has had major clinical and economic impacts in human medicine. Many of the multi-drug resistant (MDR) Enterobacteriaceae found in humans are community-acquired and linked to food animals (i.e. livestock raised for meat and dairy products). In this study, we examined whether numerically dominant, commensal Escherichia coli strains from humans (n=63 isolates) and domestic animals (n=174 isolates) in the same community and with matching phenotypic AMR patterns, were clonally related or shared the same plasmids. We identified 25 multi-drug resistant isolates (i.e. resistant to 3 or more antimicrobial classes) that shared identical phenotypic resistance patterns. We then investigated the diversity of E. coli clones, AMR genes and plasmids carrying the AMR genes using conjugation, replicon typing and whole genome sequencing. None of the MDR E. coli isolates (from children and domestic animals) analyzed were clonal. While the majority of isolates shared the same antimicrobial resistance genes and replicons, DNA sequencing indicated that these genes and replicons were found on different plasmid structures. Our findings suggest that nonclonal resistance gene dissemination is common in this community and that diverse plasmids carrying AMR genes presents a significant challenge for understanding the movement of AMR in a community.IMPORTANCEEven though Escherichia coli strains may share nearly identical AMR profiles, AMR genes, and overlap in space and time, the diversity of clones and plasmids challenges to research that aims to identify sources of AMR. Horizontal gene transfer appears to play a much larger role than clonal expansion in the spread of AMR in the community.


Author(s):  
Juan Martín Talavera-Gonzalez ◽  
Martin Talavera-Rojas ◽  
Edgardo Soriano-Vargas ◽  
JESUS VAZQUEZ-NAVARRETE ◽  
Celene Salgado-Miranda

The transmission of multi-drug resistant pathogens and antimicrobial-resistant genes is an arising problem with multiple factors involved (humans, domestic animals, wildlife). The aim of this study was to investigate the presence of Escherichia coli isolates with different antimicrobial resistance genes from backyard poultry and demonstrate the in vitro transduction phenomenon of these genes between phages from migratory wild-birds and poultry E. coli isolates. We collected 197 E. coli isolates from chicken, turkeys, and ducks in backyard production units (northern region of the State of Mexico). Isolates were resistant to ampicillin (80.7%), tetracycline (64.4%), carbenicillin (56.3%), and nalidixic acid and trimethoprim-sulfamethoxazole (both, 26.9%). Moreover, blaTEM (56.3%), tetB (20.8%), tetA (19.2%), sulI (7.6%), sulII (10.1%), qnrA (9.6%) and qnrB (5.5%) genes were found. In vitro transduction using phages from migratory wild birds sampled in the wetland Chimaliapan (State of Mexico) was worked out. It was possible to transduce qnrA, tetB, blaTEM and sulII genes to E. coli isolates from poultry. This is the first report that describes the transduction of antimicrobial resistance genes from phages of migratory wild birds to poultry and suggests the possible transmission in backyard production units.


Sign in / Sign up

Export Citation Format

Share Document