Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient

2019 ◽  
Vol 286 ◽  
pp. 522-529 ◽  
Author(s):  
Mei Hua ◽  
Jiaxi Lu ◽  
Di Qu ◽  
Chang Liu ◽  
Lei Zhang ◽  
...  
2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Guihun Jiang ◽  
Zhaogen Wu ◽  
Kashif Ameer ◽  
Shanji Li ◽  
Karna Ramachandraiah

Abstract Dietary fibers (DFs) and associated phytochemicals in ginseng species are known to provide various functional and health benefits. The incorporation of ginseng insoluble dietary fiber (IDF) in food products often result in undesirable physicochemical properties. Thus, to overcome such demerits, micronization of IDF has been considered. This study investigated the effect of particle size on the physicochemical properties, antioxidant activities, structure and thermal analysis of ginseng IDF. Micronized IDF powder with median particle diameter of 15.83 μm was produced through fine grinding. Reduction of ginseng IDF resulted in increased brightness, water holding capacity and solubility. Decreasing particle sizes also lowered bulk, tapped density, Carr index and Hausner ratio. Reduction of particle size caused greater extractability of mineral and phenolic content and thereby increasing the DPPH radical scavenging activity and ferric reducing antioxidant power. Increased polyphenol extraction with smaller particle size also lowered the mice erythrocytes hemolysis percentage while the hemolysis inhibition rate was increased. Particle size also influenced the thermal stability of ginseng IDF powders. FTIR spectra revealed lack of impact on the major phenolic structures due to superfine grinding. Hence,micronized ginseng IDF powders with improved physicochemical properties and antioxidant activities possess the potential to be used in food and pharmaceutical industries.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zohaib Hassan ◽  
Muhammad Imran ◽  
Muhammad Haseeb Ahmad ◽  
Muhammad Kamran Khan

Modification of insoluble dietary fiber (IDF) to soluble dietary fiber (SDF) improves not only the various health benefits but also the functional properties for improved product development. This research aimed to examine the effects of sonication treatment on the functional and physicochemical properties with possible structural changes in chia seeds dietary fiber. Central composite design was applied to optimize the sonication treatment process (amplitude 55%, time 20 min, and temperature 40°C) based on the oil holding capacity (OHC) and water holding capacity (WHC) as responses. Under these optimum conditions, ultrasound-treated IDF exhibited better functional and physicochemical properties such as OHC, WHC, glucose adsorption capacity (GAC), and water retention capacity (WRC) than untreated IDF. Fourier-transform infrared spectroscopy further confirmed the structural changes in treated and untreated IDF to explain the changes in the studied parameters.


LWT ◽  
2021 ◽  
Vol 142 ◽  
pp. 111008
Author(s):  
Tengnu Liu ◽  
Kang Wang ◽  
Wei Xue ◽  
Li Wang ◽  
Congnan Zhang ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 485
Author(s):  
Vera Schmid ◽  
Antje Trabert ◽  
Judith (Schäfer) Keller ◽  
Mirko Bunzel ◽  
Heike P. Karbstein ◽  
...  

Food by-products can be used as natural and sustainable food ingredients. However, a modification is needed to improve the technofunctional properties according to the specific needs of designated applications. A lab-scale twin-screw extruder was used to process enzymatically treated apple pomace from commercial fruit juice production. To vary the range of the thermomechanical treatment, various screw speeds (200, 600, 1000 min−1), and screw configurations were applied to the raw material. Detailed chemical and functional analyses were performed to develop a comprehensive understanding of the impact of the extrusion processing on apple pomace composition and technofunctional properties as well as structures of individual polymers. Extrusion at moderate thermomechanical conditions increased the water absorption, swelling, and viscosity of the material. An increase in thermomechanical stress resulted in a higher water solubility index, but negatively affected the water absorption index, viscosity, and swelling. Scanning electron microscopy showed an extrusion-processing-related disruption of the cell wall. Dietary fiber analysis revealed an increase of soluble dietary fiber from 12.6 to 17.2 g/100 g dry matter at maximum thermo-mechanical treatment. Dietary fiber polysaccharide analysis demonstrated compositional changes, mainly in the insoluble dietary fiber fraction. In short, pectin polysaccharides seem to be susceptible to thermo-mechanical stress, especially arabinans as neutral side chains of rhamnogalacturonan I.


2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Eun-Ha Kim ◽  
So-Young Lee ◽  
Da-Young Baek ◽  
Soo-Yun Park ◽  
Sang-Gu Lee ◽  
...  

Abstract Red peppers are a remarkable source of nutrients in the human diet. However, comprehensive studies have not reported on the effects of genotype, cultivation region, and year on pepper fruit characteristics. To address this, 12 commercial pepper varieties were grown at two locations in South Korea, during 2016 and 2017, representing four environments, and concentrations of proximate, minerals, amino acids, fatty acids, capsaicinoids, and free sugars in pepper pericarps were determined. Variation in most nutrients was observed among the 12 varieties grown within each location in each year, indicating a significant genotype effect. Statistical analysis of combined data showed significant differences among varieties, locations, and years for the measured components. The % variability analysis demonstrated that environment (location and year) and genotype-environment interaction contributed more to the nutritional contents than genotype alone. Particularly, variation in many amino acids, capsaicinoids, free sugars, and myristic acid was attributed to location. Year effect was significant for palmitoleic acid, ash, tryptophan, copper, linolenic acid, crude fiber, and tyrosine. Insoluble dietary fiber, soluble dietary fiber, sodium, sulfate, linoleic acid, and alanine were primarily varied by genotype–environment interaction. Palmitic acid was the trait the most highly affected by genotype. Cultivation and the genotype–environment interaction have a major role in determining the composition of 12 pepper varieties across four environments. The data from this study could explain the natural variation in the compositional data of peppers by genotypes and environments.


Sign in / Sign up

Export Citation Format

Share Document