scholarly journals Ultrasound-Assisted Modification of Insoluble Dietary Fiber from Chia (Salvia hispanica L.) Seeds

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zohaib Hassan ◽  
Muhammad Imran ◽  
Muhammad Haseeb Ahmad ◽  
Muhammad Kamran Khan

Modification of insoluble dietary fiber (IDF) to soluble dietary fiber (SDF) improves not only the various health benefits but also the functional properties for improved product development. This research aimed to examine the effects of sonication treatment on the functional and physicochemical properties with possible structural changes in chia seeds dietary fiber. Central composite design was applied to optimize the sonication treatment process (amplitude 55%, time 20 min, and temperature 40°C) based on the oil holding capacity (OHC) and water holding capacity (WHC) as responses. Under these optimum conditions, ultrasound-treated IDF exhibited better functional and physicochemical properties such as OHC, WHC, glucose adsorption capacity (GAC), and water retention capacity (WRC) than untreated IDF. Fourier-transform infrared spectroscopy further confirmed the structural changes in treated and untreated IDF to explain the changes in the studied parameters.

Author(s):  
Sandoval-Gallegos Eli Mireya ◽  
Arias-Rico José ◽  
Cruz-Cansino Nelly del Socorro ◽  
Ramírez-Ojeda Deyanira ◽  
Zafra-Rojas Quinatzin Yadira ◽  
...  

The aim of the present research was to determine the effect of boiling on nutritional composition, total phenolic compounds, antioxidant capacity, physicochemical and morphological characteristics of two edible plants Malva parviflora (mallow leaf) and Myrtillocactus geometrizans (garambullo flower). The plants had an important nutritional composition as carbohydrates (48-70 %), dietary fiber (36-42 %) and protein (13 %), as well as total phenolic compounds (468-750 mg GAE/100 g db) with a high antioxidant capacity. However, boiling originated the decrease of soluble compounds, carbohydrates, total phenolic compounds, antioxidant capacity and physicochemical properties. Plants changed to dark colors and physicochemical properties were affected, except to water retention capacity, oil retention capacity and viscosity, which had the same values in mallow leaves (raw and boiled), but increased water retention capacity in garambullo flowers, it may be by changes in the morphology observed. Therefore, is to suggest the raw consumption or with minimal cooking of these plants to avoid changes caused by thermal treatment.


2015 ◽  
Vol 5 (01) ◽  
Author(s):  
Lik Anah ◽  
Nuri Astrini

Carboxymethylcellulose (CMCNa), hydroxyethyl cellulose (HEC) were used as raw materials for synthesizing a superabsorbent polymer (SAP) hydrogel by solution polymerization techniques using of 2.5% water-soluble carbodiimide (WSC) as crosslinking agent and 1% citric acid as catalysator. The  ratio of CMCNa to HEC at 1 : 1; 3 : 1; 5 : 1 and 10 : 1 were used as variable of process. The effect of monomer concentration on water absorbency and water uptake was studied. The swelling test showed that the highest water retention capacity (6.58 g/g) was reached at ratio CMCNa to HEC = 5 : 1 in 100 minutes and the deswelling test ( 61.47%) was reached at ratio CMCNa to HEC = 5 :1 in 120 minutes. PPA absorb hydrogel was used as standard with equilibrium swelling 123 g/g. The SAP hydrogel were characterized by infra red spectroscopy, and the result showed that there were some of structural changes in height of few bands of hydrophylic groups such as =C-H at 2930 cm-1, C-H antisym and sym at 2875 cm-1, H-bonded –OH at 2375 cm-1, -COO- antisym at 1600 cm-1 whereas C-O at 1025 cm-1.Keywords: hydrogel, SAP, swelling, crosslinking, WSCABSTRAKSuper Absorbent Polymer (SAP) hydrogel yang disintesa melalui proses polimerisasi Carboxymethylcellulose (CMCNa), Hydroxyethyl Cellulose (HEC) menggunakan Water- soluble Carbodiimide (WSC) sebagai crosslinking agent telah dilakukan melalui teknik polimerisasi larutan (solution polimerization techniques). Pada percobaan awal telah ditetapkan konsentrasi monomer sebagai variabel proses yaitu CMCNa / HEC rasio = 1:1, 3:1, 5:1, 10:1 dan masing- masing rasio direaksikan dengan 2,5 % WSC dan 1 % asam sitrat sebagai katalisator. Pengaruh konsentrasi monomer diiuji dari kemampuan hasil gel yang terbentuk dalam menyerap dan mengikat air (water uptake) yang divisualisasikan sebagai swelling dan deswelling ratio. Hasil uji swelling menunjukkan bahwa derajat swelling tertinggi dicapai pada rasio CMCNa / HEC = 5:1 dalam waktu 100 menit dengan derajat swelling = 6,58 g/g. Hidrogel PPA absorb komersial digunakan sebagai standar pembanding dengan derajat swelling 123 g/g. Hasil uji deswelling menunjukkan bahwa persentase retensi air dalam gel adalah 61,47 % untuk rasio CMCNa / HEC = 5:1 pada 120 menit. Hasil karakterisasi gugus fungsi melalui analisis FTIR menunjukkan bahwa ada perbedaan nyata antara selulosa awal dengan selulosa yang direaksikan dengan WSC. Pita serapan tajam untuk gugus fungsi =C-H berada pada bilangan gelombang 2930 cm-1 dan C-H antisym dan sym terjadi pada 2875 cm-1, H-bonded-OH pada 2375 cm-1, gugus fungsi –COO- antisym berada pada bilangan gelombang 1600 cm-1, dan C-O terjadi pada 1025 cm-1.Kata kunci: hidrogel, SAP, swelling, crosslinking, WSC


Author(s):  
Cai-Hong Wang ◽  
Yi-Long Ma ◽  
Dan-Ye Zhu ◽  
Hao Wang ◽  
Ya-Fei Ren ◽  
...  

Dietary fiber are non-digestible constituents of plant cell walls, and comprise a necessary component of diet and its positive connection with human health. Till now, there is no report about the extraction and physicochemical and functional properties of dietary fiber from bamboo shoots. To find the potential applications of dietary fiber from bamboo shoots in food and health products, the effects of chemical, enzymatic methods and particle size distribution on the chemical and structural composition, physicochemical, and functional properties of dietary fibers (DFs) from bamboo shoots were studied. The results showed that BSEDF and BSCDF had higher total DF and higher soluble DF, respectively. The crystalline regions calculated to be higher in latter and both had irregular surfaces and diverse monosaccharide composition. Both fibers showed good functional properties [water retention capacity (WRC) (11.24-15.13g/g), water swelling capacity (WSC) (18.84-28.75 mL/g), oil holding capacity (OAC) (6.71-10.15 g/g), glucose adsorption capacity (GAC) (0.08-6.89 mmol/g) and glucose retardation index (GRI) (3.57-40.92%)]. WRC of BSCDF and BSEDF decreased with the increase in the mesh size (40-200) while, WSC and OAC increased with mesh sizes (40 to 120), followed by decrease above mesh120. Both particle size and extraction methods significantly affected GRI. In conclusion, physico-chemical properties of fibers can be manipulated through treatments (chemical and enzymatic) to improve their overall functionality. Therefore, both BSCDF and BSEDF can find potential applications in food and health products as a functional ingredient in different aspects.


2021 ◽  
Author(s):  
Dagmar Nadja Henner ◽  
Gottfried Kirchengast ◽  
Melannie D. Hartman ◽  
Clara Hohmann

<p>Sustainable agriculture and forestry are essential topics under climate change and a potential route for increasing long-term soil and biomass carbon storage, soil water retention capacity, and reducing water and wind erosion risks. This study uses two, geographically and climatologically diverse, showcase regions in Southeastern Austria (the Raab and lower Enns catchment regions) for exploring sustainable whole-system options for climate change adaptation and mitigation under increased hot-dry conditions in agriculture and forestry. We consider options as “sustainable whole-system” that jointly achieve accumulation of soil carbon and robustness of soil water retention capacity, an increase of soil quality, reduction of soil erosion and degradation, reduced compaction, stabilisation of slopes, sustainability and resilience in the soil as well as the agricultural and forest production systems. These options are evaluated using site-level data in the regions together with a carefully combined set of hydrologic, biomass, biogeochemical and ecosystem models. This model setup includes the hydrological model WaSiM, the biogeochemical and ecosystem model DayCent, and the biomass models MiscanFor, SalixFor, and PopFor. Based on dense data of the WegenerNet observing network and further hydrometeorological data, combined with hydrological modelling (WaSiM), the current hydrological disturbance potential in the focus regions is assessed. Furthermore, downscaled IPCC climate change scenarios are used for future projections and combined with WaSiM results. These data are evaluated for increasing heat and drought risks for soils and agricultural and forest production. This work provides the hydrological context for modelling the soil water and carbon storage enhancement options that farming, forestry and land-use practices might apply. A first key study aspect is then the sustainable potential of bioenergy crops. Using the local-scale WegenerNet data combined with site-specific land management data obtained from farmer and forest manager communities and where necessary with soil data from the Harmonized World Soil Database (HWSD), potential yields for bioenergy from lignocellulosic biomass (forest and Miscanthus, willow, and poplar) are modelled using DayCent, MiscanFor, Salix For, and PopFor for representative local areas in the showcase regions. For the second key aspect of this research, DayCent is used at selected data-rich locations, to develop sustainable system options under future climate change scenarios with a focus on different agricultural, forest management, and land-use practices. For comparison, a set of sample agricultural rotations is modelled with DayCent to place the suggested sustainable whole-system options potential of bioenergy crops in context. Furthermore, various agrarian rotation runs are used to determine the potential of changes in the rotation to increase soil carbon storage and enhance water holding capacity in agricultural soils under climate change. Forest management practice runs are used to investigate the possible changes needed for stable forest soils under increasing heat and drought conditions. Sustainable whole-system options for farmers and forest managers are discussed as the primary results from this study part, together with the next steps towards upscaling the results to the country level.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Karol Fijałkowski ◽  
Rafał Rakoczy ◽  
Anna Żywicka ◽  
Radosław Drozd ◽  
Beata Zielińska ◽  
...  

The aim of the study was to assess the influence of rotating magnetic field (RMF) on the morphology, physicochemical properties, and the water holding capacity of bacterial cellulose (BC) synthetized by Gluconacetobacter xylinus. The cultures of G. xylinus were exposed to RMF of frequency that equals 50 Hz and magnetic induction 34 mT for 3, 5, and 7 days during cultivation at 28°C in the customized RMF exposure system. It was revealed that BC exposed for 3 days to RMF exhibited the highest water retention capacity as compared to the samples exposed for 5 and 7 days. The observation was confirmed for both the control and RMF exposed BC. It was proved that the BC exposed samples showed up to 26% higher water retention capacity as compared to the control samples. These samples also required the highest temperature to release the water molecules. Such findings agreed with the observation via SEM examination which revealed that the structure of BC synthesized for 7 days was more compacted than the sample exposed to RMF for 3 days. Furthermore, the analysis of 2D correlation of Fourier transform infrared spectra demonstrated the impact of RMF exposure on the dynamics of BC microfibers crystallinity formation.


Sign in / Sign up

Export Citation Format

Share Document