The role of dietary proteins and carbohydrates in gut microbiome composition and activity: a review

2021 ◽  
pp. 106911
Author(s):  
Stav Peled ◽  
Yoav D. Livney
2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Roma Pahwa ◽  
Miriam Balderas ◽  
Ishwarlal Jialal ◽  
Xinpu Chen ◽  
Ruth Ann Luna ◽  
...  

Aims. Diabetes is a proinflammatory state, evidenced by increased pattern recognition receptors and the inflammasome (NOD-like receptor family pyrin domain (NLRP)) complex. Recent reports have elucidated the role of the gut microbiome in diabetes, but there is limited data on the gut microbiome in NLRP-KO mice and its effect on diabetes-induced inflammation. Methods. Gut microbiome composition and biomarkers of inflammation (IL-18, serum amyloid A) were assessed in streptozotocin- (STZ-) induced diabetic mice on a NLRP3-knockout (KO) background versus wild-type diabetic mice. Results. SAA and IL-18 levels were significantly elevated in diabetic mice (STZ) compared to control (WT) mice, and there was a significant attenuation of inflammation in diabetic NLRP3-KO mice (NLRP3-KO STZ) compared to control mice (p<0.005). Principal coordinate analysis clearly separated controls, STZ, and NLRP3-KO STZ mice. Among the different phyla, there was a significant increase in the Firmicutes : Bacteroidetes ratio in the diabetic group compared to controls. When compared to the WT STZ group, the NLRP3-KO STZ group showed a significant decrease in the Firmicutes : Bacteroidetes ratio. Together, these findings indicate that interaction of the intestinal microbes with the innate immune system is a crucial factor that could modify diabetes and complications.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1734
Author(s):  
Janice Mayne ◽  
Xu Zhang ◽  
James Butcher ◽  
Krystal Walker ◽  
Zhibin Ning ◽  
...  

Salmonella infections (salmonellosis) pose serious health risks to humans, usually via food-chain contamination. This foodborne pathogen causes major food losses and human illnesses, with significant economic impacts. Overuse of antibiotics in the food industry has led to multidrug-resistant strains of bacteria, and governments are now restricting their use, leading the food industry to search for alternatives to secure food chains. Bacteriophages, viruses that infect and kill bacteria, are currently being investigated and used as replacement treatments and prophylactics due to their specificity and efficacy. They are generally regarded as safe alternatives to antibiotics, as they are natural components of the ecosystem. However, when specifically used in the industry, they can also make their way into humans through our food chain or exposure, as is the case for antibiotics. In particular, agricultural workers could be repeatedly exposed to bacteriophages supplemented to animal feeds. To our knowledge, no studies have investigated the effects of such exposure to bacteriophages on the human gut microbiome. In this study, we used a novel in-vitro assay called RapidAIM to investigate the effect of a bacteriophage mixture, BAFASAL®, used in poultry farming on five individual human gut microbiomes. Multi-omics analyses, including 16S rRNA gene sequencing and metaproteomic, revealed that ex-vivo human gut microbiota composition and function were unaffected by BAFASAL® treatment, providing an additional measure for its safety. Due to the critical role of the gut microbiome in human health and the known role of bacteriophages in regulation of microbiome composition and function, we suggest assaying the impact of bacteriophage-cocktails on the human gut microbiome as a part of their safety assessment.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3013
Author(s):  
John A. Bouranis ◽  
Laura M. Beaver ◽  
Jaewoo Choi ◽  
Carmen P. Wong ◽  
Duo Jiang ◽  
...  

Isothiocyanates, such as sulforaphane and iberin, derived from glucosinolates (GLS) in cruciferous vegetables, are known to prevent and suppress cancer development. GLS can also be converted by bacteria to biologically inert nitriles, such as sulforaphane-nitrile (SFN-NIT) and iberin-nitrile (IBN-NIT), but the role of the gut microbiome in this process is relatively undescribed and SFN-NIT excretion in humans is unknown. An ex vivo fecal incubation model with in vitro digested broccoli sprouts and 16S sequencing was utilized to explore the role of the gut microbiome in SFN- and IBN-NIT production. SFN-NIT excretion was measured among human subjects following broccoli sprout consumption. The fecal culture model showed high inter-individual variability in nitrile production and identified two sub-populations of microbial communities among the fecal cultures, which coincided with a differing abundance of nitriles. The Clostridiaceae family was associated with high levels, while individuals with a low abundance of nitriles were more enriched with taxa from the Enterobacteriaceae family. High levels of inter-individual variation in urine SFN-NIT levels were also observed, with peak excretion of SFN-NIT at 24 h post broccoli sprout consumption. These results suggest that nitrile production from broccoli, as opposed to isothiocyanates, could be influenced by gut microbiome composition, potentially lowering efficacy of cruciferous vegetable interventions.


2020 ◽  
Vol 36 (4) ◽  
pp. 647-656
Author(s):  
Jessica A. Davis ◽  
Kelley Baumgartel ◽  
Michael J. Morowitz ◽  
Vivianna Giangrasso ◽  
Jill R. Demirci

Background Necrotizing enterocolitis is associated with a high incidence of morbidity and mortality in premature infants. Human milk minimizes necrotizing enterocolitis risk, although the mechanism of protection is not thoroughly understood. Increasingly, dysbiosis of the infant gut microbiome, which is affected by infant diet, is hypothesized to play a role in necrotizing enterocolitis pathophysiology. Research aim The aim of this scoping review was to summarize the state of the science regarding the hypothesis that the gut microbiome composition is a mediator of the relationship between human milk and decreased incidence of necrotizing enterocolitis within a sample of human infants. Methods Electronic databases and reference lists were searched for peer-reviewed primary research articles addressing the link between human milk, gut microbiome composition, and subsequent incidence of necrotizing enterocolitis among human infants. Results A total of four studies met criteria for inclusion in this review. Of these, evidence supporting the link between human milk, gut microbiome composition, and necrotizing enterocolitis was found in two (50%) studies. Conclusion Some evidence linking all three variables is provided in this review. Given the small number of available studies, and the limitations of those studies, more research is urgently needed to thoroughly understand the protection against necrotizing enterocolitis gained through the provision of human milk.


2018 ◽  
Author(s):  
Aashish R Jha ◽  
Emily R Davenport ◽  
Yoshina Gautam ◽  
Dinesh Bhandari ◽  
Sarmila Tandukar ◽  
...  

The composition of the gut microbiome in industrialized populations differs from those living traditional lifestyles. However, it has been difficult to separate the contributions of human genetic and geographic factors from lifestyle/modernization. Here, we characterize the stool bacterial composition of four Himalayan populations to investigate how the gut community changes in response to shifts in human lifestyles. These groups led seminomadic hunting-gathering lifestyles until transitioning to varying dependence upon farming. The Tharu began farming 250-300 years ago, the Raute and Raji transitioned 30-40 years ago, and the Chepang retain many aspects of a foraging lifestyle. We assess the contributions of dietary and environmental factors on their gut microbiota and find that the gut microbiome composition is significantly associated with lifestyle. The Chepang foragers harbor elevated abundance of taxa associated with foragers around the world. Conversely, the gut microbiomes of populations that have transitioned to farming are more similar to those of Americans, with agricultural dependence and several associated lifestyle and environmental factors correlating with the extent of microbiome divergence from the foraging population. For example, our results show that drinking water source and solid cooking fuel are significantly associated with the gut microbiome. Despite the pronounced differences in gut bacterial composition across populations, we found little differences in alpha diversity across populations. These findings in genetically similar populations living in the same geographical region establish the key role of lifestyle in determining human gut microbiome composition and point to the next challenging steps of isolating dietary effects from other factors that change during modernization.


2019 ◽  
Vol 111 (2) ◽  
pp. 340-350 ◽  
Author(s):  
Amy Jennings ◽  
Manja Koch ◽  
Majken K Jensen ◽  
Corinna Bang ◽  
Jan Kassubek ◽  
...  

ABSTRACT Background Flavonoid intake modifies the composition of the gut microbiome, which contributes to the metabolism of flavonoids. Few studies have examined the contribution of the gut microbiome to the health benefits associated with flavonoid intake. Objectives We aimed to examine associations between habitual intakes of flavonoid subclasses and MRI-determined visceral (VAT) and subcutaneous (SAT) adipose tissue. Uniquely, we also identified associations between the aforementioned measurements and gut microbiome composition sequenced from 16S ribosomal RNA genes. Methods We undertook cross-sectional analyses of 618 men and women (n = 368 male), aged 25–83 y, from the PopGen cohort. Results Higher intake of anthocyanins was associated with lower amounts of VAT [tertile (T)3-T1:  −0.49 dm3; β: −8.9%; 95% CI: −16.2%, −1.1%; P = 0.03] and VAT:SAT ratio (T3-T1: −0.04; β: −7.1%; 95% CI: −13.5%, −0.3%; P = 0.03). Higher intakes of anthocyanin-rich foods were also inversely associated with VAT [quantile (Q)4-Q1: −0.39 dm3; β: −9.9%; 95% CI: −17.4%, −1.6%; P = 0.02] and VAT:SAT ratio (Q4-Q1: −0.04; β: −6.5%; 95% CI: −13.3%, −0.9%; P = 0.03). Participants with the highest intakes of anthocyanin-rich foods also had higher microbial diversity (Q4-Q1: β: 0.18; 95% CI: 0.06, 0.31; P &lt; 0.01), higher abundances of Clostridiales (Q4-Q1: β: 449; 95% CI: 96.3, 801; P = 0.04) and Ruminococcaceae (Q4-Q1: β: 313; 95% CI: 33.6, 591; P = 0.04), and lower abundance of Clostridium XIVa (Q4-Q1: β: −41.1; 95% CI: −72.4, −9.8; P = 0.04). Participants with the highest microbial diversity, abundances of Clostridiales and Ruminococcaceae, and lower abundance of Clostridium XIVa had lower amounts of VAT. Up to 18.5% of the association between intake of anthocyanin-rich foods and VAT could be explained by the gut microbiome. Conclusions These novel data suggest that higher microbial diversity and abundance of specific taxa in the Clostridiales order may contribute to the association between higher intake of anthocyanins and lower abdominal adipose tissue.


2022 ◽  
Vol 12 ◽  
Author(s):  
Gianluca Scuderi ◽  
Emidio Troiani ◽  
Angelo Maria Minnella

The term microbiome means not only a complex ecosystem of microbial species that colonize our body but also their genome and the surrounding environment in which they live. Recent studies support the existence of a gut-retina axis involved in the pathogenesis of several chronic progressive ocular diseases, including age-related macular disorders. This review aims to underline the importance of the gut microbiome in relation to ocular health. After briefly introducing the characteristics of the gut microbiome in terms of composition and functions, the role of gut microbiome dysbiosis, in the development or progression of retinal diseases, is highlighted, focusing on the relationship between gut microbiome composition and retinal health based on the recently investigated gut-retina axis.


2021 ◽  
Author(s):  
Janice Mayne ◽  
Xu Zhang ◽  
James Butcher ◽  
Krystal Walker ◽  
Zhibin Ning ◽  
...  

Salmonella infections (salmonellosis) pose serious health risks to humans, usually via contamination in our food chain. This foodborne pathogen causes major food losses and human illnesses that result in significant economic impacts. Pathogens such as Salmonella have traditionally been kept at bay through the use of antibiotics, but antibiotic overuse within the food industry has led to the development of numerous multidrug-resistant bacterial strains. Thus, governments are now restricting antibiotic use, forcing the industry to search for alternatives to secure safe food chains. Bacteriophages, viruses that infect and kill bacteria, are currently being investigated and used as replacement treatments and prophylactics due to their specificity and efficacy. They are generally regarded as safe alternatives to antibiotics as they are natural components of the ecosystem. One example is BAFASEL, a commercial bacteriophage mixture that specifically targets Salmonella and is currently approved for use in poultry farming. However, when specifically used in the industry they can also make their way into humans through our food chain or exposure as is the case for antibiotics. In particular, agricultural workers could be repeatedly exposed to bacteriophages supplemented in animal feeds. To the best of our knowledge, no studies have investigated the effects of such exposure to bacteriophages on the human gut microbiome. In this study, we used a novel in vitro assay called RapidAIM to investigate BAFASAL's potential impact on five individual human gut microbiomes. Multi-omics analyses, including 16S rRNA gene sequencing and metaproteomic, revealed that ex vivo human gut microbiota composition and function were unaffected by BAFASAL treatment providing an additional measure for its safety. Due to the critical role of the gut microbiome in human health and the known role of bacteriophages in regulation of microbiome composition and function, we suggest assaying the impact of bacteriophage-cocktails on the human gut microbiome as a part of their safety assessment.


Sign in / Sign up

Export Citation Format

Share Document