Glycopeptide derived from soybean β-conglycinin inhibits the adhesion of Escherichia coli and Salmonella to human intestinal cells

2008 ◽  
Vol 41 (6) ◽  
pp. 594-599 ◽  
Author(s):  
Baichong Yang ◽  
Xuemei Zhang ◽  
Xiaolan Bao ◽  
Ying Lv ◽  
Jing Zhang ◽  
...  
2015 ◽  
Vol 79 (4) ◽  
pp. 603-607 ◽  
Author(s):  
Giovanni V. Coppa ◽  
Bruna Facinelli ◽  
Gloria Magi ◽  
Emanuela Marini ◽  
Lucia Zampini ◽  
...  

2004 ◽  
Vol 72 (8) ◽  
pp. 4859-4863 ◽  
Author(s):  
Sylvie Hudault ◽  
O. Brad Spiller ◽  
B. Paul Morgan ◽  
Alain L. Servin

ABSTRACT Afa/Dr diffusely adhering Escherichia coli (DAEC) bacteria that are responsible for recurrent urinary tract and gastrointestinal infections recognized as a receptor the glycosylphosphatidylinositol (GPI)-anchored protein decay-accelerating factor (DAF; CD55) at the brush border of cultured human intestinal cells. Results show that Afa/Dr DAEC C1845 bacteria were poorly associated with the mucosa of the gastrointestinal tract of infected mice. We conducted experiments with Chinese hamster ovary (CHO) cells stably transfected with mouse (GPI or transmembrane forms), pig, or human CD55 or mouse Crry cDNAs or transfected with empty vector pDR2EF1α. Recombinant E. coli AAEC185 bacteria expressing Dr or F1845 adhesins bound strongly to CHO cells expressing human CD55 but not to the CHO cells expressing mouse (transmembrane and GPI anchored), rat, or pig CD55 or mouse Crry. Positive clustering of CD55 around Dr-positive bacteria was observed in human CD55-expressing CHO cells but not around the rarely adhering Dr-positive bacteria randomly distributed at the cell surface of CHO cells expressing mouse, rat, or pig CD55.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cheng-Rung Huang ◽  
Cheng-Ju Kuo ◽  
Chih-Wen Huang ◽  
Yu-Ting Chen ◽  
Bang-Yu Liu ◽  
...  

AbstractEnterohemorrhagic Escherichia coli (EHEC) induces changes to the intestinal cell cytoskeleton and formation of attaching and effacing lesions, characterized by the effacement of microvilli and then formation of actin pedestals to which the bacteria are tightly attached. Here, we use a Caenorhabditis elegans model of EHEC infection to show that microvillar effacement is mediated by a signalling pathway including mitotic cyclin-dependent kinase 1 (CDK1) and diaphanous-related formin 1 (CYK1). Similar observations are also made using EHEC-infected human intestinal cells in vitro. Our results support the use of C. elegans as a host model for studying attaching and effacing lesions in vivo, and reveal that the CDK1-formin signal axis is necessary for EHEC-induced microvillar effacement.


1983 ◽  
Vol 39 (3) ◽  
pp. 1102-1106 ◽  
Author(s):  
C F Deneke ◽  
K McGowan ◽  
G M Thorne ◽  
S L Gorbach

2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S34-S35
Author(s):  
Jiannan Li ◽  
Ilyssa Gordon ◽  
Dina Dejanovic ◽  
Sinan Lin ◽  
Jie Wang ◽  
...  

Abstract Background Intestinal fibrosis is a severe complication of inflammatory bowel diseases (IBD) leading to intestinal strictures and need for surgery. No effective anti-fibrotic therapy is available. Cadherin-11 (Cad-11) is an adherens junction protein, which is upregulated in rheumatoid arthritis (RA), idiopathic pulmonary fibrosis (IPF) and skin fibrosis. Inhibition of cadherin-11 has shown beneficial effects in RA and IPF animal models. A phase II clinical trial of cadherin-11 inhibition in RA has shown a good safety profile. Our aim was to evaluate the expression levels and function of Cad-11 in IBD patients using intestinal tissues, primary human intestinal cells, and the murine dextran sulfate sodium (DSS)-induced chronic colitis model. Methods IBD (Crohn’s disease (CD) n=20; Ulcerative colitis (UC) (n=10) and control (n=10) full thickness resected intestinal tissues were procured from adults in accordance with IRB approval. Protein and mRNA were extracted for western blot (WB) and quantitative polymerase chain reaction (qPCR). Distribution of Cad-11 was evaluated by immunofluorescence (IF) and RNA hybridization in frozen and formalin-fixed paraffin-embedded (FFPE) tissue sections, respectively. Primary human intestinal myofibroblasts (HIMF) were used in functional experiments. Recombinant human Fc and Cad-11 extracellular domain (hCAD-11-Fc) was used as activator and siRNA as inhibitor of Cad-11 in HIMF. Murine chronic colitis was induced in wildtype BALB/c mice and cadherin-11 knockout mice by DSS. Anti-Cad-11 monoclonal antibody (H1M1) was used for the treatment of BALB/c mouse colitis. Results Increased gene and protein expression levels of Cad-11 were found in intestinal full thickness IBD tissue compared to controls (45-fold, p<0.01). Cad-11 colocalized with alpha smooth muscle actin (α-SMA) (Figure 1), indicating that Cad-11 is selectively expressed in intestinal myofibroblasts and smooth muscle cells. Among all the primary human intestinal cells, Cad-11 was expressed exclusively in HIMF and HIMC cells. Level of Cad-11 was increased in IBD HIMFs compared to non-IBD controls, and increased upon stimulation with TNF-α, IL-1β, b-FGF and TGF-β (all p<0.01). Knocking down Cad-11 with siRNA decreased FN expression, while hCAD-11-Fc increased the expression FN in a dose- and time-dependent manner as well as the proliferation of HIMF. Upon treatment with H1M1 antibody, DSS-treated mice showed lower clinical scores and weight loss compared to control mice (p<0.001. Figure 2), as well as less FN expression (p<0.001). Cadherin-11 knockout mice also showed lower clinical scores and weight loss compared to wild type mice (p<0.001). Conclusions Cad-11 expression is increased in CD stricture tissues and its blockade reduces profibrotic effects in HIMF in vitro. Inhibition of Cad-11 in vivo reduces clinical severity and fibrosis of experimental colitis.


2017 ◽  
Vol 39 ◽  
pp. 156-168 ◽  
Author(s):  
Evelien Van Rymenant ◽  
László Abrankó ◽  
Sarka Tumova ◽  
Charlotte Grootaert ◽  
John Van Camp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document