Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents

2018 ◽  
Vol 111 ◽  
pp. 67-76 ◽  
Author(s):  
M. Ivanović ◽  
M.E. Alañón ◽  
D. Arráez-Román ◽  
A. Segura-Carretero
Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4736
Author(s):  
Sylwia Bajkacz ◽  
Kornelia Rusin ◽  
Anna Wolny ◽  
Jakub Adamek ◽  
Karol Erfurt ◽  
...  

A novel, efficient extraction procedure based on natural deep eutectic solvents (NADES) and ionic liquids (ILs) for determination of 20-hydroxyecdysone (20-E) in spinach has been developed. NADES, the first green extraction agent, with different hydrogen bond donors and acceptors are screened in order to determine extraction efficiencies. NADES consisting of lactic acid and levulinic acid at a molar ratio of 1:1 exhibits the highest yields. ILs, the second green extraction agent, with various cations and anions are also investigated, where [TEA] [OAc]·AcOH, χAcOH = 0.75 displays the highest recovery. Moreover, NADES-SLE and IL-SLE (SLE, solid-liquid extraction) parameters are investigated. Using the obtained optimized method, the recoveries of the target compound in spinach are above 93% and 88% for NADES-SLE and IL-SLE procedure, respectively. The methods display good linearity within the range of 0.5–30 μg/g and LODs of 0.17 µg/g. The proposed NADES-SLE-UHPLC-UV and IL-SLE-UHPLC-UV procedures can be applied to the analysis of 20-E in real spinach samples, making it a potentially promising technique for food matrix. The main advantage of this study is the superior efficiency of the new, green extraction solvents, which results in a significant reduction of extraction time and solvents as compared to those in the literature.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 242 ◽  
Author(s):  
Jeniffer Torres-Vega ◽  
Sergio Gómez-Alonso ◽  
José Pérez-Navarro ◽  
Edgar Pastene-Navarrete

Peumus boldus Mol., is a Chilean medicinal tree used for gastrointestinal and liver diseases. Such medicinal properties are associated with the presence of bioactive flavonoids and aporphine alkaloids. In this study, a new green and efficient extraction method used seven natural deep eutectic solvents (NADES) as extraction media. The extraction efficiency of these NADES was assessed, determining the contents of boldine and total phenolic compounds (TPC). Chemical profiling of P. boldus was done by high-performance liquid chromatography coupled to photo diode array detector and electrospray ion-trap mass spectrometry (HPLC-PDA-ESI-IT/MS) and electrospray ionization quadrupole time-of-flight high-resolution mass spectrometry (HPLC-ESI-QTOF-MS). Among the NADES tested, NADES4 (choline chloride-lactic acid) and NADES6 (proline-oxalic acid) enable better extraction of boldine with 0.427 ± 0.018 and 2.362 ± 0.055 mg of boldine g−1 of plant, respectively. Extraction of boldine with NADES4 and NADES6 was more efficient than extractions performed with methanol and water. On the other hand, the highest TPC were obtained using NADES6, 179.442 ± 3.79 mg of gallic acid equivalents (GAE g−1). Moreover, TPC in extracts obtained with methanol does not show significant differences with NADES6. The HPLC-PAD-MS/MS analysis enable the tentative identification of 9 alkaloids and 22 phenolic compounds. The results of this study demonstrate that NADES are a promising green extraction media to extract P. boldus bioactive compounds and could be a valuable alternative to classic organic solvents.


Foods ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 205
Author(s):  
Wei Zhang ◽  
Xianrui Liang

In this study, natural deep eutectic solvents (NADESs) were used as both the extraction and dilution matrix in static headspace gas chromatography-mass spectrometry (SHS-GC-MS) for the analysis of volatile components in Ipomoea cairica (L). Sweet (ICS) leaves. Six NADESs were prepared and the NADESs composed of choline chloride and glucose with a 1:1 molar ratio containing 15% water were preferred due to the better peak responses. A total of 77 volatiles in ICS leaves were detected and tentatively identified by mass spectral matching with the US National Institute of Standards and Technology (NIST, 2014) Mass Spectral Library and the retention index-assisted qualitative method. These 77 volatile components were mainly terpenoids, aromatics, and aliphatics. Among them, β-elemene, β-caryophyllene, α-humulene, and 2, 4-di-tert-butylphenol were found to be the main components. This investigation verified that the use of NADESs is an efficient green extraction and dilution matrix of the SHS-GC-MS method for direct volatile component analysis of plant materials without extra extraction work.


2018 ◽  
Vol 9 (2) ◽  
pp. 335 ◽  
Author(s):  
Kamarza Mulia, Ph.D ◽  
Dezaldi Adam ◽  
Ida Zahrina ◽  
Elsa Krisanti, Ph.D

2021 ◽  
Vol 11 (11) ◽  
pp. 4897
Author(s):  
Bárbara Socas-Rodríguez ◽  
M. Vanessa Torres-Cornejo ◽  
Gerardo Álvarez-Rivera ◽  
Jose A. Mendiola

In this work, a review about the applicability of eutectic solvents, mainly deep eutectic solvents (DES) and natural deep eutectic solvents (NADES), for the extraction of bioactive compounds from natural products has been carried out. These alternative solvents have shown not only to have high extraction yields but also to be environmentally friendly, exhibiting very low or almost no toxicity, compared to conventional organic solvents. The last trends and main extraction methods that have been most widely used in studies using these emerging solvents have been reviewed, as well as the varied natural sources in which they have been used, including agro-food by-products. Besides the toxicity, biodegradability of these solvents is reviewed. Likewise, different reported bioactivity tests have been included, in which extracts obtained with these ecological solvents have been tested from antioxidant activity analysis to in vivo studies with rats, through in vitro cytotoxicity tests.


Sign in / Sign up

Export Citation Format

Share Document