Cyclic stretch-induced eNOS translocation to the mitochondrion induces mitochondrial dysfunction and oxidative stress in pulmonary artery endothelial cells

2018 ◽  
Vol 128 ◽  
pp. S45
Author(s):  
Evgeny Zemskov ◽  
Xutong Sun ◽  
Archana Kangath ◽  
Qing Lu ◽  
Jason Yuan ◽  
...  
2003 ◽  
Vol 31 (5) ◽  
pp. 960-962 ◽  
Author(s):  
Jenny A. Wilkinson ◽  
Ron Jacob

[Ca2+]i (cytosolic [Ca2+]) and OS (oxidative stress) were measured simultaneously in calf pulmonary artery endothelial cells using fura-2 and carboxy-2´,7´-dichlorodihydrofluorescein. ATP stimulated a [Ca2+]i increase that was followed a few seconds later by an increase in OS. Pre-exposure to 5 μM H2O2 potentiated these responses to ATP. Elevating or removing extracellular Ca2+ increased or reduced the [Ca2+]i response to ATP and caused parallel changes in the OS response, suggesting that this response was a consequence of the [Ca2+]i response. Inhibition of mitochondria with rotenone or antimycin A affected the responses but not in a manner that allowed a simple interpretation of the role of mitochondria. These data show an initimate connection between [Ca2+]i and OS that can be modulated by low levels of exogenously applied OS, allowing the possibility of positive feedback.


PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0239625
Author(s):  
Prasanna M. Chandramouleeswaran ◽  
Manti Guha ◽  
Masataka Shimonosono ◽  
Kelly A. Whelan ◽  
Hisatsugu Maekawa ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5851
Author(s):  
Takehito Sugasawa ◽  
Seiko Ono ◽  
Masato Yonamine ◽  
Shin-ichiro Fujita ◽  
Yuki Matsumoto ◽  
...  

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rapidly increasing worldwide. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has been used to create a mouse model of nonalcoholic steatohepatitis (NASH). There are some reports on the effects on mice of being fed a CDAHFD for long periods of 1 to 3 months. However, the effect of this diet over a short period is unknown. Therefore, we examined the effect of 1-week CDAHFD feeding on the mouse liver. Feeding a CDAHFD diet for only 1-week induced lipid droplet deposition in the liver with increasing activity of liver-derived enzymes in the plasma. On the other hand, it did not induce fibrosis or cirrhosis. Additionally, it was demonstrated that CDAHFD significantly impaired mitochondrial respiration with severe oxidative stress to the liver, which is associated with a decreasing mitochondrial DNA copy number and complex proteins. In the gene expression analysis of the liver, inflammatory and oxidative stress markers were significantly increased by CDAHFD. These results demonstrated that 1 week of feeding CDAHFD to mice induces steatohepatitis with mitochondrial dysfunction and severe oxidative stress, without fibrosis, which can partially mimic the early stage of NASH in humans.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 229
Author(s):  
JunHyuk Woo ◽  
Hyesun Cho ◽  
YunHee Seol ◽  
Soon Ho Kim ◽  
Chanhyeok Park ◽  
...  

The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5′-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Haijun Zhao ◽  
Yanhui He

Diabetic retinopathy (DR), as a major cause of blindness worldwide, is one common complication of diabetes mellitus. Inflammatory response and oxidative stress injury of endothelial cells play significant roles in the pathogenesis of DR. The study is aimed at investigating the effects of lysophosphatidylcholine (LPC) on the dysfunction of high glucose- (HG-) treated human retinal microvascular endothelial cells (HRMECs) after being cocultured with bone marrow mesenchymal stem cells (BMSCs) and the underlying regulatory mechanism. Coculture of BMSCs and HRMECs was performed in transwell chambers. The activities of antioxidant-related enzymes and molecules of oxidative stress injury and the contents of inflammatory cytokines were measured by ELISA. Flow cytometry analyzed the apoptosis of treated HRMECs. HRMECs were further treated with 10-50 μg/ml LPC to investigate the effect of LPC on the dysfunction of HRMECs. Western blotting was conducted to evaluate levels of TLR4 and p-NF-κB proteins. We found that BMSCs alleviated HG-induced inflammatory response and oxidative stress injury of HRMECs. Importantly, LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs. Furthermore, LPC upregulated the protein levels of TLR4 and p-NF-κB, activating the TLR4/NF-κB signaling pathway. Overall, our study demonstrated that LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs via TLR4/NF-κB signaling.


2008 ◽  
Vol 40 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Carlos A. O. Sigolo ◽  
Paolo Di Mascio ◽  
Alicia J. Kowaltowski ◽  
Camila C. M. Garcia ◽  
Marisa H. G. Medeiros

2010 ◽  
Vol 88 (3) ◽  
pp. 241-248 ◽  
Author(s):  
Garry X. Shen

Cardiovascular diseases are the predominant cause of death in patients with diabetes mellitus. Underlying mechanism for the susceptibility of diabetic patients to cardiovascular diseases remains unclear. Elevated oxidative stress was detected in diabetic patients and in animal models of diabetes. Hyperglycemia, oxidatively modified atherogenic lipoproteins, and advanced glycation end products are linked to oxidative stress in diabetes. Mitochondria are one of major sources of reactive oxygen species (ROS) in cells. Mitochondrial dysfunction increases electron leak and the generation of ROS from the mitochondrial respiratory chain (MRC). High levels of glucose and lipids impair the activities of MRC complex enzymes. NADPH oxidase (NOX) generates superoxide from NADPH in cells. Increased NOX activity was detected in diabetic patients. Hyperglycemia and hyperlipidemia increased the expression of NOX in vascular endothelial cells. Accumulated lines of evidence indicate that oxidative stress induced by excessive ROS production is linked to many processes associated with diabetic cardiovascular complications. Overproduction of ROS resulting from mitochondrial dysfunction or NOX activation is associated with uncoupling of endothelial nitric oxide synthase, which leads to reduced production of nitric oxide and endothelial-dependent vasodilation. Gene silence or inhibitor of NOX reduced oxidized or glycated LDL-induced expression of plasminogen activator inhibitor-1 in endothelial cells. Statins, hypoglycemic agents, and exercise may reduce oxidative stress in diabetic patients through the reduction of NOX activity or the improvement of mitochondrial function, which may prevent or postpone the development of cardiovascular complications.


Sign in / Sign up

Export Citation Format

Share Document