Cocoa/methylxanthines supplementation impact on brain glutathione level in aged mice

2021 ◽  
Vol 177 ◽  
pp. S107
Author(s):  
Vanja Todorovic ◽  
Nevena Dabetic ◽  
Milica Zrnic Ciric ◽  
Ivana Djuricic ◽  
Sladjana Sobajic
Keyword(s):  
2020 ◽  
Vol 25 (5) ◽  
pp. 29-35
Author(s):  
M. Yu. Maksimova ◽  
A. V. Ivanov ◽  
K. A. Nikiforova ◽  
F. R. Ochtova ◽  
E. T. Suanova ◽  
...  

Ischemic stroke (IS) and type 2 diabetes mellitus are factors that affect the homeostasis of low-molecularweight aminothiols (cysteine, homocysteine, glutathione etc.). It has already been shown that IS in the acute period led to a decrease a level of reduced forms of aminothiols, but it is not clear whether type 2 diabetes mellitus has a noticeable effect there. Objective: to reveal the features of homeostasis of aminothiols in patients with type 2 diabetes mellitus in acute IS. Material and methods. The study involved 76 patients with primary middle cerebral artery IS in the first 10–24 hours after development of neurological symptoms. Group 1 included 15 patients with IS and type 2 diabetes mellitus, group 2 — 61 patients with IS and stress hyperglycemia. Their total plasma levels of cysteine, homocysteine, and glutathione, their reduced forms, and redox status were determined at admission (in the first 24 hours after IS). Results. There was a decrease in the level of total glutathione level (1.27 vs. 1.65 μM, p = 0.021), as well as its reduced form (0.03 vs. 0.04 μM, p = 0.007) in patients with IS and type 2 diabetes mellitus. Patients with type 2 diabetes mellitus who had a low redox status of homocysteine (0.65–1.2%) and glutathione (0.7–2.0%) were also characterized by a decrease in total glutathione level (p = 0.02; p = 0.03). Conclusion. Thus, type 2 diabetes mellitus is associated with a decrease in the level of total glutathione in acute IS. Probably, type 2 diabetes mellitus is characterized by a particular relationship between the metabolism of homocysteine, glutathione and glucose. Therefore, the search for homocysteine-dependent approaches to correct glutathione metabolism in type 2 diabetes mellitus may be of interest as an adjuvant therapy for IS.


2021 ◽  
pp. 2000652
Author(s):  
Jisong Ahn ◽  
Hyo Jeong Son ◽  
Hyo Deok Seo ◽  
Tae Youl Ha ◽  
Jiyun Ahn ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Miwa Nahata ◽  
Sachiko Mogami ◽  
Hitomi Sekine ◽  
Seiichi Iizuka ◽  
Naoto Okubo ◽  
...  

AbstractChronic undernutrition contributes to the increase in frailty observed among elderly adults, which is a pressing issue in the sector of health care for older people worldwide. Autophagy, an intracellular recycling system, is closely associated with age-related pathologies. Therefore, decreased autophagy in aging could be involved in the disruption of energy homeostasis that occurs during undernutrition; however, the physiological mechanisms underlying this process remain unknown. Here, we showed that 70% daily food restriction (FR) induced fatal hypoglycemia in 23–26-month-old (aged) mice, which exhibited significantly lower hepatic autophagy than 9-week-old (young) mice. The liver expressions of Bcl-2, an autophagy-negative regulator, and Beclin1–Bcl-2 binding, were increased in aged mice compared with young mice. The autophagy inducer Tat-Beclin1 D11, not the mTOR inhibitor rapamycin, decreased the plasma levels of the glucogenic amino acid and restored the blood glucose levels in aged FR mice. Decreased liver gluconeogenesis, body temperature, physical activity, amino acid metabolism, and hepatic mitochondrial dynamics were observed in the aged FR mice. These changes were restored by treatment with hochuekkito that is a herbal formula containing several autophagy-activating ingredients. Our results indicate that Bcl-2 upregulation in the liver during the aging process disturbs autophagy activation, which increases the vulnerability to undernutrition. The promotion of liver autophagy may offer clinical therapeutic benefits to frail elderly patients.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2533
Author(s):  
Zeyu Zhou ◽  
Jocelyn Vidales ◽  
José A González-Reyes ◽  
Bradley Shibata ◽  
Keith Baar ◽  
...  

Alterations in markers of mitochondrial content with ketogenic diets (KD) have been reported in tissues of rodents, but morphological quantification of mitochondrial mass using transmission electron microscopy (TEM), the gold standard for mitochondrial quantification, is needed to further validate these findings and look at specific regions of interest within a tissue. In this study, red gastrocnemius muscle, the prefrontal cortex, the hippocampus, and the liver left lobe were used to investigate the impact of a 1-month KD on mitochondrial content in healthy middle-aged mice. The results showed that in red gastrocnemius muscle, the fractional area of both subsarcolemmal (SSM) and intermyofibrillar (IMM) mitochondria was increased, and this was driven by an increase in the number of mitochondria. Mitochondrial fractional area or number was not altered in the liver, prefrontal cortex, or hippocampus following 1 month of a KD. These results demonstrate tissue-specific changes in mitochondrial mass with a short-term KD and highlight the need to study different muscle groups or tissue regions with TEM to thoroughly determine the effects of a KD on mitochondrial mass.


Sign in / Sign up

Export Citation Format

Share Document