Differences in gene organization between type I and type II crustins in the morotoge shrimp, Pandalopsis japonica

2013 ◽  
Vol 35 (4) ◽  
pp. 1176-1184 ◽  
Author(s):  
Bokwang Kim ◽  
Meesun Kim ◽  
Ah Ran Kim ◽  
Myunggi Yi ◽  
Jung-Hwa Choi ◽  
...  
Keyword(s):  
Type I ◽  
2021 ◽  
Vol 12 ◽  
Author(s):  
Wei-Meng Zhang ◽  
Da Fang ◽  
Xiu-Zhu Cheng ◽  
Jun Cao ◽  
Xiao-Li Tan

AT-hook motif nuclear localization (AHL) proteins belong to a family of transcription factors, and play important roles in plant growth and development and response to various stresses through protein-DNA and protein-protein interactions. To better understand the Brassica napus AHL gene family, AHL genes in B. napus and related species were analyzed. Using Arabidopsis as a reference, 122 AHL gene family members were first identified in B. napus. According to the phylogenetic tree and gene organization, the BnaAHLs were classified into two clades (Clade-A and Clade-B) and three types (Type-I, Type-II, and Type-III). Gene organization and motif distribution analysis suggested that the AHL gene family is relatively conserved during evolution. These BnaAHLs are unevenly distributed on 38 chromosomes and expanded by whole-genome duplication (WGD) or segmental duplication. And large-scale loss events have also occurred in evolution. All types of BnaAHLs are subject to purification or neutral selection, while some positive selection sites are also identified in Type-II and Type-III groups. At the same time, the purification effect of Type-I members are stronger than that of the others. In addition, RNA-seq data and cis-acting element analysis also suggested that the BnaAHLs play important roles in B. napus growth and development, as well as in response to some abiotic and biotic stresses. Protein-protein interaction analysis identified some important BnaAHL-binding proteins, which also play key roles in plant growth and development. This study is helpful to fully understand the origin and evolution of the AHL gene in B. napus, and lays the foundation for their functional studies.


2010 ◽  
Vol 38 (2) ◽  
pp. 410-416 ◽  
Author(s):  
Jacqueline J.T. Marshall ◽  
Stephen E. Halford

The endonucleases from the Type IIB restriction–modification systems differ from all other restriction enzymes. The Type IIB enzymes cleave both DNA strands at specified locations distant from their recognition sequences, like Type IIS nucleases, but they are unique in that they do so on both sides of the site, to liberate the site from the remainder of the DNA on a short duplex. The fact that these enzymes cut DNA at specific locations mark them as Type II systems, as opposed to the Type I enzymes that cut DNA randomly, but in terms of gene organization and protein assembly, most Type IIB restriction–modification systems have more in common with Type I than with other Type II systems. Our current knowledge of the Type IIB systems is reviewed in the present paper.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


1987 ◽  
Vol 48 (C5) ◽  
pp. C5-525-C5-528 ◽  
Author(s):  
K. J. MOORE ◽  
P. DAWSON ◽  
C. T. FOXON
Keyword(s):  
Type I ◽  
Type Ii ◽  

2020 ◽  
pp. 37-55 ◽  
Author(s):  
A. E. Shastitko ◽  
O. A. Markova

Digital transformation has led to changes in business models of traditional players in the existing markets. What is more, new entrants and new markets appeared, in particular platforms and multisided markets. The emergence and rapid development of platforms are caused primarily by the existence of so called indirect network externalities. Regarding to this, a question arises of whether the existing instruments of competition law enforcement and market analysis are still relevant when analyzing markets with digital platforms? This paper aims at discussing advantages and disadvantages of using various tools to define markets with platforms. In particular, we define the features of the SSNIP test when being applyed to markets with platforms. Furthermore, we analyze adjustment in tests for platform market definition in terms of possible type I and type II errors. All in all, it turns out that to reduce the likelihood of type I and type II errors while applying market definition technique to markets with platforms one should consider the type of platform analyzed: transaction platforms without pass-through and non-transaction matching platforms should be tackled as players in a multisided market, whereas non-transaction platforms should be analyzed as players in several interrelated markets. However, if the platform is allowed to adjust prices, there emerges additional challenge that the regulator and companies may manipulate the results of SSNIP test by applying different models of competition.


2015 ◽  
Vol 24 (4) ◽  
pp. 523-526 ◽  
Author(s):  
Yoshihiro Maruo ◽  
Mahdiyeh Behnam ◽  
Shinichi Ikushiro ◽  
Sayuri Nakahara ◽  
Narges Nouri ◽  
...  

Background: Crigler–Najjar syndrome type I (CN-1) and type II (CN-2) are rare hereditary unconjugated hyperbilirubinemia disorders. However, there have been no reports regarding the co-existence of CN-1 and CN-2 in one family. We experienced a case of an Iranian family that included members with either CN-1 or CN-2. Genetic analysis revealed a mutation in the bilirubin UDP-glucuronosyltransferase (UGT1A1) gene that resulted in residual enzymatic activity.Case report: The female proband developed severe hyperbilirubinemia [total serum bilirubin concentration (TB) = 34.8 mg/dL] with bilirubin encephalopathy (kernicterus) and died after liver transplantation. Her family history included a cousin with kernicterus (TB = 30.0 mg/dL) diagnosed as CN-1. Her great grandfather (TB unknown) and uncle (TB = 23.0 mg/dL) developed jaundice, but without any treatment, they remained healthy as CN-2. Results: The affected cousin was homozygous for a novel frameshift mutation (c.381insGG, p.C127WfsX23). The affected uncle was compound heterozygous for p.C127WfsX23 and p.V225G linked with A(TA)7TAA. p.V225G-UGT1A1 reduced glucuronidation activity to 60% of wild-type. Thus, linkage of A(TA)7TAA and p.V225G might reduce UGT1A1 activity to 18%–36 % of the wild-type. Conclusion: Genetic and in vitro expression analyses are useful for accurate genetic counseling for a family with a history of both CN-1 and CN-2. Abbreviations: CN-1: Crigler–Najjar syndrome type I; CN-2: Crigler–Najjar syndrome type II; GS: Gilbert syndrome; UGT1A1: bilirubin UDP-glucuronosyltransferase; WT: Wild type; TB: total serum bilirubin.


Sign in / Sign up

Export Citation Format

Share Document