Microemulsion fuels for compression ignition engines: A review on engine performance and emission characteristics

Fuel ◽  
2019 ◽  
Vol 257 ◽  
pp. 115944 ◽  
Author(s):  
Iyman Abrar ◽  
Ashok N. Bhaskarwar
2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Avinash Kumar Agarwal ◽  
Nikhil Sharma ◽  
Akhilendra Pratap Singh ◽  
Vikram Kumar ◽  
Dev Prakash Satsangi ◽  
...  

Miscibility of methanol in mineral diesel and stability of methanol–diesel blends are the main obstacles faced in the utilization of methanol in compression ignition engines. In this experimental study, combustion, performance, emissions, and particulate characteristics of a single-cylinder engine fueled with MD10 (10% v/v methanol blended with 90% v/v mineral diesel) and MD15 (15% v/v methanol blended with 85% v/v mineral diesel) are compared with baseline mineral diesel using a fuel additive (1-dodecanol). The results indicated that methanol blending with mineral diesel resulted in superior combustion, performance, and emission characteristics compared with baseline mineral diesel. MD15 emitted lesser number of particulates and NOx emissions compared with MD10 and mineral diesel. This investigation demonstrated that methanol–diesel blends stabilized using suitable additives can resolve several issues of diesel engines, improve their thermal efficiency, and reduce NOx and particulate emissions simultaneously.


Work has been carried out using four stroke single cylinder diesel engine with retrofit attached with fuel injector and at optimum injection pressure 210 bar and 230 BTDC. The main purpose of using retrofit is to achieve HCCI (Homogeneous charge compression ignition) with which emissions can be reduced. Four Variants of retrofits were used and with V-cut type retrofit it was found that there is reduction in toxic emission like CO and NO but there was slight increase in HC emission when compared with normal fuel injector. Engine performance was compared with normal injector and injector with V-cut and it was found that Break thermal efficiency was increased by 0.25% at full load and 1.53% at 80% load and specific fuel consumption decreased by 0.01%.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3557 ◽  
Author(s):  
M. Mofijur ◽  
M.M. Hasan ◽  
T.M.I. Mahlia ◽  
S.M. Ashrafur Rahman ◽  
A.S. Silitonga ◽  
...  

Strict emission regulations and demand for better fuel economy are driving forces for finding advanced engines that will be able to replace the conventional internal combustion engines in the near future. Homogeneous charge compression ignition (HCCI) engines use a different combustion technique; there are no spark plugs or injectors to assist the combustion. Instead, when the mixtures reach chemical activation energy, combustion auto-ignites in multiple spots. The main objective of this review paper is to study the engine performance and emission characteristics of HCCI engines operating in various conditions. Additionally, the impact of different fuels and additives on HCCI engine performance is also evaluated. The study also introduces a potential guideline to improve engine performance and emission characteristics. Compared to conventional compression ignition and spark ignition combustion methods, the HCCI combustion mode is noticeably faster and also provides better thermal efficiency. Although a wide range of fuels including alternative and renewable fuels can be used in the HCCI mode, there are some limitation/challenges, such as combustion limited operating range, phase control, high level of noise, cold start, preparation of homogeneous charge, etc. In conclusion, the HCCI combustion mode can be achieved in existing spark ignition (SI) engines with minor adjustments, and it results in lower oxides of nitrogen (NOx) and soot emissions, with practically a similar performance as that of SI combustion. Further improvements are required to permit extensive use of the HCCI mode in future.


2020 ◽  
Vol 170 ◽  
pp. 01026
Author(s):  
Mayur Jadhav ◽  
Swati Jadhav ◽  
Supriya Chavan

Alternative fuels have become very important nowadays and proving their importance in both positive ignition engines and compression ignition engines, so as to reduce the consumption of gasoline and diesel respectively. Also, blending of these alternative fuels (additives) into gasoline has been proved important in improving various performance parameters and reducing emission parameters. Various studies have been carried out in the field of using additives in gasoline to see the effects on performance parameters like Brake power, Brake thermal efficiency, Volumetric efficiency and brake specific fuel consumption. Also, this study emphasizes reducing the emissions to the ambient. The aim of this review is to compare and study various additives which can be blended with gasoline and study their effect on performance and emission characteristics of Spark ignition engines.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Gayatri K. Mistri ◽  
Suresh K. Aggarwal ◽  
Douglas Longman ◽  
Avinash K. Agarwal

Biofuels produced from nonedible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from nonedible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel's oxidative stability. The biodiesels were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, four-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently, the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in brake thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), brake specific fuel consumption (BSFC) (13.1% and 5.6%), and nitrogen oxides (NOx) emission (9.8% and 12.9%), and a reduction in brake specific hydrocarbon emission (BSHC) (8.64% and 12.9%), and brake specific CO emission (BSCO) (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures and NOx levels along with higher soot formation for all test fuels. The physicochemical properties such as fatty acid profile, cetane number, and oxygen content in biodiesels support the observed combustion and emission characteristics of the fuels tested in this study. Finally, the effect of long-term storage is found to increase the glycerol content, acid value, and cetane number of the two biodiesels, indicating some oxidation of unsaturated fatty acids in the fuels.


2017 ◽  
Vol 36 (3) ◽  
pp. 535-555 ◽  
Author(s):  
Mandeep Singh ◽  
Surjit Kumar Gandhi ◽  
Sunil Kumar Mahla ◽  
Sarbjot Singh Sandhu

The present work explores the use of argemone mexicana (non-edible and adulterer to mustard oil) biodiesel in multicylinder compression ignition, indirect injection engine. Argemone Mexicana biodiesel was produced by transesterification process and the important physico-chemical properties of various blends were investigated. Blends of diesel/biodiesel (AB10, AB20, AB30 and AB40) were prepared and used for analysing the engine performance and emission characteristics at varying loads (0, 25, 50 and 75%) and speeds (2500–4000 r/min). The results show improvement in indicated thermal efficiency and indicated specific fuel consumption with increased proportion of biodiesel in diesel, when compared to conventional diesel. In addition, exhaust emissions such as carbon monoxide, unburnt hydrocarbon and smoke opacity were significantly reduced by AOME/diesel blends. The improvement in engine performance and exhaust emissions were observed up to 30% blending of AOME/diesel. Beyond that, higher blend (AB40) showed deterioration in performance characteristics in contrast to AB30 but still better as compared to conventional diesel.


The increasing industrialization and motorization of the world has led to a steep rise for the demand of petroleum products. Petroleum based fuels are obtained from limited reserves. In the wake of this situation, there is an urgent need to promote use of alternative fuel which must be technically feasible, economically competitive, environmentally acceptable and readily available. In the present study, Mahua seed oil methyl esters (MSOME) were prepared through transesterification and evaluation of important physico-chemical properties was carried and the properties were found within acceptable limits. A compression ignition engine was fuelled with three blends of MSOME with diesel (10, 20 and 30% on volume basis) and various performance and emission characteristics were evaluated and results compared with baseline data of diesel. The results suggest the BTE was higher for MSOME blends and BSFC, HC and smoke opacity were lower as compared to diesel fuel. This may be attributed to improved combustion for MSOME are oxygenated fuels and have higher cetane number. The values of NOx were found almost nearer for all blends as compared to diesel. Addition of 1-hexanol (Ignition improver) 0.5%, 1% volume ratios to the optimum blend (MSOME30) for evaluating the engine performance and emissions parameters and the main purpose of ignition improver is to improve combustion process and reduction in engine emissions. Finally results shows that performance and emissions have been to justify the potentiality of the mahua seed oil methyl esters as alternative fuel for compression ignition engines without any modifications


2021 ◽  
pp. 1-24
Author(s):  
Avinash Kumar Agarwal ◽  
Akhilendra P. Singh ◽  
Vikram Kumar

Abstract Researchers have investigated reactivity-controlled compression ignition (RCCI) combustion in the past several years because of its excellent combustion, performance, and emission features. In this experimental study, the RCCI combustion strategy was investigated using mineral diesel/ butanol fuel-pair at various premixed ratios (rp) on an energy basis (rp= 0.25, 0.50, and 0.75) at varying engine loads (BMEP of 1, 2, 3, and 4 bar) vis-à-vis baseline compression ignition (CI) combustion (rp= 0.0) strategy. Experiments were performed at constant engine speed (1500 rpm) in a single-cylinder research engine equipped with state-of-the-art features. The outcome of the investigation showed that port injection of Butanol as low reactivity fuel (LRF) improved the combustion and yielded superior engine performance than baseline CI combustion strategy. Engine exhaust emissions exhibited significantly lower nitrogen (NOx) oxides with butanol RCCI combustion strategy than baseline CI combustion strategy. Increasing rp of Butanol showed improved combustion and emission characteristics; however, performance characteristics were not affected significantly. Particulate characteristics of the RCCI combustion strategy also showed a significant reduction in particle number concentration than baseline CI combustion. Slightly different combustion, performance, and emission characteristics of mineral diesel/ butanol fueled RCCI combustion strategy compared to other test fuels such as mineral diesel/ methanol, and mineral diesel/ ethanol-fueled RCCI combustion strategy was an interesting observation of this study. Overall, this study indicated that Butanol could be used as LRF in RCCI combustion strategy engines to achieve superior combustion and emission characteristics.


Sign in / Sign up

Export Citation Format

Share Document