A combined pretreatment, fermentation and ethanol-assisted liquefaction process for production of biofuel from Chlorella sp.

Fuel ◽  
2019 ◽  
Vol 257 ◽  
pp. 116026 ◽  
Author(s):  
Quazi Mahzabin Rahman ◽  
Bo Zhang ◽  
Lijun Wang ◽  
Abolghasem Shahbazi
2018 ◽  
Vol 159 (18) ◽  
pp. 703-708
Author(s):  
Gábor Vasas

Abstract: More than 90% of herbal products and herbal medicines have been derived from higher plants recently, but due to independent circumstances, several photosynthetic microalgal species are in focus in this point of view. In the last 50 years, many carbohydrate-, peptide-, terpenoid-, alkaloid- and phenol-type components were described from algae because of the developing structural determination and analytical methods, algae mass production and also artificial algae technologies. At the same time, based partly on traditional causes and partly on the clinical and preclinical data of today, some dried products of algae are directly used as food supplements. Hereinafter, the historical background, economic significance and metabolic background of the mostly used microalgal species will be reviewed. The diverse metabolite production of these organisms will be demonstrated by some molecules with special bioactivity. Several preclinical and clinical studies will be described relating to the microalgal species Spirulina sp., Chlorella sp., Haematococcus sp. and Dunaliella sp. Orv Hetil. 2018; 159(18): 703–708.


2016 ◽  
Vol 04 ◽  
pp. 1 ◽  
Author(s):  
Phong, H.Q. ◽  
Dat, N.V. ◽  
Huong, H.L. ◽  
Au, T.D.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3138
Author(s):  
Kamila Gosz ◽  
Agnieszka Tercjak ◽  
Adam Olszewski ◽  
Józef Haponiuk ◽  
Łukasz Piszczyk

The utilization of forestry waste resources in the production of polyurethane resins is a promising green alternative to the use of unsustainable resources. Liquefaction of wood-based biomass gives polyols with properties depending on the reagents used. In this article, the liquefaction of forestry wastes, including sawdust, in solvents such as glycerol and polyethylene glycol was investigated. The liquefaction process was carried out at temperatures of 120, 150, and 170 °C. The resulting bio-polyols were analyzed for process efficiency, hydroxyl number, water content, viscosity, and structural features using the Fourier transform infrared spectroscopy (FTIR). The optimum liquefaction temperature was 150 °C and the time of 6 h. Comprehensive analysis of polyol properties shows high biomass conversion and hydroxyl number in the range of 238–815 mg KOH/g. This may indicate that bio-polyols may be used as a potential substitute for petrochemical polyols. During polyurethane synthesis, materials with more than 80 wt% of bio-polyol were obtained. The materials were obtained by a one-step method by hot-pressing for 15 min at 100 °C and a pressure of 5 MPa with an NCO:OH ratio of 1:1 and 1.2:1. Dynamical-mechanical analysis (DMA) showed a high modulus of elasticity in the range of 62–839 MPa which depends on the reaction conditions.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 821-830
Author(s):  
Davide De Simeis ◽  
Stefano Serra ◽  
Alessandro Di Fonzo ◽  
Francesco Secundo

Natural flavor and fragrance market size is expected to grow steadily due to the rising consumer demand of natural ingredients. This market request is guided by the general opinion that the production of natural compounds leads to a reduction of pollution, with inherent advantages for the environment and people’s health. The biotransformation reactions have gained high relevance in the production of natural products. In this context, few pieces of research have described the role of microalgae in the oxidation of terpenoids. In this present study, we questioned the role of microalgal based oxidation in the synthesis of high-value flavors and fragrances. This study investigated the role of three different microalgae strains, Chlorella sp. (211.8b and 211.8p) and Chlorococcum sp. (JB3), in the oxidation of different terpenoid substrates: α-ionone, β-ionone, theaspirane and valencene. Unfortunately, the experimental data showed that the microalgal strains used are not responsible for the substrate oxidation. In fact, our experiments demonstrate that the transformation of the four starting compounds is a photochemical reaction that involves the oxygen as oxidant. Even though these findings cast a shadow on the use of these microorganisms for an industrial purpose, they open a new possible strategy to easily obtain nootkatone in a natural way by just using an aqueous medium, oxygen and light.


Sign in / Sign up

Export Citation Format

Share Document