scholarly journals Symmetry function – An effective tool for evaluating the gait symmetry of trans-femoral amputees

Author(s):  
Sławomir Winiarski ◽  
Alicja Rutkowska-Kucharska ◽  
Mateusz Kowal
Author(s):  
Hannah Lena Siebers ◽  
Waleed Alrawashdeh ◽  
Marcel Betsch ◽  
Filippo Migliorini ◽  
Frank Hildebrand ◽  
...  

Abstract Background Symmetry is a sign of physiological and healthy movements, as pathologies are often described by increased asymmetries. Nevertheless, based on precisely measured data, even healthy individuals will show small asymmetries in their movements. However, so far there do not exist commonly accepted methods and reference values for gait symmetry in a healthy collective. Therefore, a comparison and presentation of reference values calculated by 3 different methods of symmetry indices for lower limb joint angles during walking, ascending, and descending stairs were shown. Methods Thirty-five healthy participants were analyzed during walking, ascending, and descending stairs with the help of the inertial measurement system MyoMotion. Using the normalized symmetry index (SInorm), the symmetry index (SI) as the integral of the symmetry function, and another normalized symmetry index (NSI), the symmetry of joint angles was evaluated. For statistical evaluation of differences, repeated measurement models and Bland–Altman-Plots were used. Results Apart from a bias between the symmetry indices, they were comparable in the predefined limits of 5%. For all parameters, significantly higher asymmetry was found for ankle dorsi/-plantarflexion, compared with the hip and knee flexion. Moreover, the interaction effect of the joint and movement factors was significant, with an increased asymmetry of the hip and knee during descending stairs greater than while ascending stairs or walking, but a reduced symmetry of the ankle during walking when compared to descending. The movement only showed significant effects when analyzing the SInorm. Conclusion Even for healthy individuals, small asymmetries of movements were found and presented as reference values using 3 different symmetry indices for dynamic lower limb joint angles during 3 different movements. For the quantification of symmetrical movements differences between the joints, movements, and especially their interaction, are necessary to be taken into account. Moreover, a bias between the methods should be noted. The potential for each presented symmetry index to identify pathological movements or track a rehabilitation process was shown but has to be proven in further research. Trial registration: DRKS00025878.


Author(s):  
Mateusz Kowal ◽  
Sławomir Winiarski ◽  
Ewa Gieysztor ◽  
Anna Kołcz ◽  
Karolina Walewicz ◽  
...  

Abstract Background Above-knee amputations (AKAs) contribute to gait asymmetry. The level of asymmetry is affected by the type of knee prosthetic module. There is limited evidence suggesting that more technically advanced solutions (microprocessor modules; MicPK) are superior to less advanced ones (mechanical modules; MechPK). The study aimed to evaluate the variable range of hip and pelvic joint movements during gait and look for differentiating areas with an increased level of asymmetry of the gait cycle in individuals who underwent an AKA and are equipped with MicPK or MechPK. Methods Twenty-eight individuals participated in the study; 14 were assigned to a study group of individuals who underwent a unilateral AKA, and the other 14 were healthy participants as a control group. The movement task was recorded using the optoelectronic SMART-E system following the standard Davis protocol (the Newington model). A new method of quantifying gait symmetry using the symmetry function (SF) is proposed. SF is an integral measure of absolute differences in time-standardized signals between sides throughout the whole cycle of motion variability. Results In the frontal plane, there were significant differences between groups in the asymmetry of the range of movement in the hip joint of the intact limb. In the middle of the support phase, the intact limb was more adducted in individuals with MicPK and less abducted in people with MechPK (differences in mean 180%, p < 0.000; max 63%, p < 0.000; min 65%, p < 0.000). In the sagittal plane, the range of asymmetry of the flexion and thigh extension of the intact limb was similar to and only slightly different from the physiological gait. In the transverse plane, higher asymmetry values were noted for individuals with MicPK. In the final stage of the swing phase, the thigh was more rotated both externally and internally. The size of the asymmetry, when compared to gait of healthy individuals, reached 50% (differences in mean 115%, p < 0.232; max 62% p < 0.26; min 50, p < 0.154). Conclusions In the study group, the assessed ranges of pelvic and thigh movement in the hip joint differed only in the frontal plane. Individuals who underwent a unilateral above-knee amputation may gain less from using MicPK than anticipated.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alexis Brierty ◽  
Christopher P. Carty ◽  
Claudia Giacomozzi ◽  
Teresa Phillips ◽  
Henry P. J. Walsh ◽  
...  

Abstract Background Typical gait is often considered to be highly symmetrical, with gait asymmetries typically associated with pathological gait. Whilst gait symmetry is often expressed in symmetry ratios, measures of symmetry do not provide insight into how these asymmetries affect gait variables. To fully understand changes caused by gait asymmetry, we must first develop a normative database for comparison. Therefore, the aim of this study was to describe normative reference values of regional plantar load and present comparisons with two pathological case studies. Methods A descriptive study of the load transfer of plantar pressures in typically developed children was conducted to develop a baseline for comparison of the effects of gait asymmetry in paediatric clinical populations. Plantar load and 3D kinematic data was collected for 17 typically developed participants with a mean age of 9.4 ± 4.0 years. Two case studies were also included; a 10-year-old male with clubfoot and an 8-year-old female with a flatfoot deformity. Data was analysed using a kinematics-pressure integration technique for anatomical masking into 5 regions of interest; medial and lateral forefoot, midfoot, and medial and lateral hindfoot. Results Clear differences between the two case studies and the typical dataset were seen for the load transfer phase of gait. For case study one, lateral bias was seen in the forefoot of the trailing foot across all variables, as well as increases in contact area, force and mean pressure in the lateral hindfoot of the leading foot. For case study two, the forefoot of the trailing foot produced results very similar to the typical dataset across all variables. In the hindfoot of the leading foot, medial bias presents most notably in the force and mean pressure graphs. Conclusions This study highlights the clinical significance of the load transfer phase of gait, providing meaningful information for intervention planning.


2021 ◽  
Vol 35 (2) ◽  
pp. 131-144
Author(s):  
Maijke van Bloemendaal ◽  
Sicco A. Bus ◽  
Frans Nollet ◽  
Alexander C. H. Geurts ◽  
Anita Beelen

Background. Many stroke survivors suffer from leg muscle paresis, resulting in asymmetrical gait patterns, negatively affecting balance control and energy cost. Interventions targeting asymmetry early after stroke may enhance recovery of walking. Objective. To determine the feasibility and preliminary efficacy of up to 10 weeks of gait training assisted by multichannel functional electrical stimulation (MFES gait training) applied to the peroneal nerve and knee flexor or extensor muscle on the recovery of gait symmetry and walking capacity in patients starting in the subacute phase after stroke. Methods. Forty inpatient participants (≤31 days after stroke) were randomized to MFES gait training (experimental group) or conventional gait training (control group). Gait training was delivered in 30-minute sessions each workday. Feasibility was determined by adherence (≥75% sessions) and satisfaction with gait training (score ≥7 out of 10). Primary outcome for efficacy was step length symmetry. Secondary outcomes included other spatiotemporal gait parameters and walking capacity (Functional Gait Assessment and 10-Meter Walk Test). Linear mixed models estimated treatment effect postintervention and at 3-month follow-up. Results. Thirty-seven participants completed the study protocol (19 experimental group participants). Feasibility was confirmed by good adherence (90% of the participants) and participant satisfaction (median score 8). Both groups improved on all outcomes over time. No significant group differences in recovery were found for any outcome. Conclusions. MFES gait training is feasible early after stroke, but MFES efficacy for improving step length symmetry, other spatiotemporal gait parameters, or walking capacity could not be demonstrated. Trial Registration. Netherlands Trial Register (NTR4762).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Soulard ◽  
J. Vaillant ◽  
R. Balaguier ◽  
N. Vuillerme

AbstractInertial measurement units (IMUs) are increasingly popular and may be usable in clinical routine to assess gait. However, assessing their intra-session reliability is crucial and has not been tested with foot-worn sensors in healthy participants. The aim of this study was to assess the intra-session reliability of foot-worn IMUs for measuring gait parameters in healthy adults. Twenty healthy participants were enrolled in the study and performed the 10-m walk test in single- and dual-task ('carrying a full cup of water') conditions, three trials per condition. IMUs were used to assess spatiotemporal gait parameters, gait symmetry parameters (symmetry index (SI) and symmetry ratio (SR)), and dual task effects parameters. The relative and the absolute reliability were calculated for each gait parameter. Results showed that spatiotemporal gait parameters measured with foot-worn inertial sensors were reliable; symmetry gait parameters relative reliability was low, and SR showed better absolute reliability than SI; dual task effects were poorly reliable, and taking the mean of the second and the third trials was the most reliable. Foot-worn IMUs are reliable to assess spatiotemporal and symmetry ratio gait parameters but symmetry index and DTE gait parameters reliabilities were low and need to be interpreted with cautious by clinicians and researchers.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Alicja Rutkowska-Kucharska ◽  
Mateusz Kowal ◽  
Sławomir Winiarski

Many studies have shown that unilateral transfemoral amputation involves asymmetric gait. Transfemoral amputation leads to muscle atrophy in a tight stump resulting in asymmetry in muscle torque between the amputated and intact limb. This research is aimed at verifying if a relationship between torque values of hip joint flexors and extensors and gait asymmetry in patients with TFA exists. Fourteen adult subjects with unilateral TFA took part in the experiment. Gait symmetry was evaluated based on the ground reaction force (GRF). Measurements of muscle torque of hip flexors and extensors were taken with a Biodex System. All measurements were taken under isokinetic (60°/s and 120°/s) and isometric conditions. The symmetry index of vertical GRF components was from 7.5 to 11.5%, and anterio-posterior GRF from 6.2 to 9.3%. The symmetry index for muscle torque was from 24.3 to 44% for flexors, from 39 to 50.5% for extensors, and from 28.6 to 50% in the flexor/extensor ratio. Gait asymmetry correlated with muscle torque in hip joint extensors. Therapy which enhances muscle torque may be an effective form of patient therapy. The patient needs to undergo evaluation of their muscle strength and have the therapy programme adjusted to their level of muscle torque deficit.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1333
Author(s):  
Syed S. U. H. Bukhari ◽  
Alan G. McElligott ◽  
Rebecca S. V. Parkes

There are approximately 112 million working equids in developing countries, many of which are associated with brick kilns. Brick kilns and overloading are associated with welfare problems in working equids. Understanding equids’ abilities and influencing factors are important for both effective performance and welfare. Traditionally, measurement of the amount of ‘bone’ was used, and more recently, gait symmetry has been identified as a potential marker for loading capacity. Assessment of stride parameters and gait kinematics provides insights into adaptations to loading and may help determine cut-off loads. Physiological factors such as the ability to regain normal heart rates shortly after work is an important tool for equine fitness assessment and a more accurate measure of load-carrying capacity than absolute heart rate. Oxidative stress, plasma lactate, and serum creatine kinase activity are reliable biochemical indicators of loading ability. For monitoring stress, salivary cortisol is superior to serum cortisol level for assessment of hypothalamus-pituitary-adrenal axis and is related to eye temperatures, but this has yet to be interpreted in terms of load-carrying ability in equids. Further research is needed to standardize the evidence-based load-carrying capacity of working horses and donkeys.


Sign in / Sign up

Export Citation Format

Share Document