The impact of Saccharomyces boulardii adjuvant supplementation on alternation of gut microbiota after H. pylori eradication; a metagenomics analysis

Gene Reports ◽  
2022 ◽  
pp. 101499
Author(s):  
Masoud Keikha ◽  
Hossein Kamali
2021 ◽  
Vol 12 ◽  
Author(s):  
Gracia M. Martin-Nuñez ◽  
Isabel Cornejo-Pareja ◽  
Mercedes Clemente-Postigo ◽  
Francisco J. Tinahones

Helicobacter pylori (H. pylori) is a gram-negative bacterium that infects approximately 4.4 billion individuals worldwide. Although the majority of infected individuals remain asymptomatic, this bacterium colonizes the gastric mucosa causing the development of various clinical conditions as peptic ulcers, chronic gastritis and gastric adenocarcinomas and mucosa-associated lymphoid tissue lymphomas, but complications are not limited to gastric ones. Extradigestive pathologies, including metabolic disturbances such as diabetes, obesity and nonalcoholic fatty liver disease, have also been associated with H. pylori infection. However, the underlying mechanisms connecting H. pylori with extragastric metabolic diseases needs to be clarified. Notably, the latest studies on the topic have confirmed that H. pylori infection modulates gut microbiota in humans. Damage in the gut bacterial community (dysbiosis) has been widely related to metabolic dysregulation by affecting adiposity, host energy balance, carbohydrate metabolism, and hormonal modulation, among others. Taking into account that Type 2 diabetic patients are more prone to be H. pylori positive, gut microbiota emerges as putative key factor responsible for this interaction. In this regard, the therapy of choice for H. pylori eradication, based on proton pump inhibitor combined with two or more antibiotics, also alters gut microbiota composition, but consequences on metabolic health of the patients has been scarcely explored. Recent studies from our group showed that, despite decreasing gut bacterial diversity, conventional H. pylori eradication therapy is related to positive changes in glucose and lipid profiles. The mechanistic insights explaining these effects should also be addressed in future research. This review will deal with the role of gut microbiota as the linking factor between H. pylori infection and metabolic diseases, and discussed the impact that gut bacterial modulation by H. pylori eradication treatment can also have in host’s metabolism. For this purpose, new evidence from the latest human studies published in more recent years will be analyzed.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 262-LB
Author(s):  
ISABEL CORNEJO-PAREJA ◽  
GRACIA MARÍA MARTIN-NUÑEZ ◽  
M. MAR ROCA-RODRIGUEZ ◽  
ISABEL MORENO-INDIAS ◽  
LAURA VINUELA ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 298-LB
Author(s):  
ISABEL CORNEJO-PAREJA ◽  
GRACIA MARÍA MARTIN-NUÑEZ ◽  
ISABEL MORENO-INDIAS ◽  
FERNANDO F. CARDONA-DÍAZ ◽  
M. MAR ROCA-RODRIGUEZ ◽  
...  
Keyword(s):  

2019 ◽  
Vol 97 (9) ◽  
pp. 3741-3757 ◽  
Author(s):  
Nirosh D Aluthge ◽  
Dana M Van Sambeek ◽  
Erin E Carney-Hinkle ◽  
Yanshuo S Li ◽  
Samodha C Fernando ◽  
...  

Abstract A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.


2020 ◽  
Vol 7 ◽  
Author(s):  
Xupeng Yuan ◽  
Jiahao Yan ◽  
Ruizhi Hu ◽  
Yanli Li ◽  
Ying Wang ◽  
...  

Recent evidences suggest that gut microbiota plays an important role in regulating physiological and metabolic activities of pregnant sows, and β-carotene has a potentially positive effect on reproduction, but the impact of β-carotene on gut microbiota in pregnant sows remains unknown. This study aimed to explore the effect and mechanisms of β-carotene on the reproductive performance of sows from the aspect of gut microbiota. A total of 48 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into three groups (n = 16) and fed with a basal diet or a diet containing 30 or 90 mg/kg of β-carotene from day 90 of gestation until parturition. Dietary supplementation of 30 or 90 mg/kg β-carotene increased the number of live birth to 11.82 ± 1.54 and 12.29 ± 2.09, respectively, while the control group was 11.00 ± 1.41 (P = 0.201). Moreover, β-carotene increased significantly the serum nitric oxide (NO) level and glutathione peroxidase (GSH-Px) activity (P < 0.05). Characterization of fecal microbiota revealed that 90 mg/kg β-carotene increased the diversity of the gut flora (P < 0.05). In particular, β-carotene decreased the relative abundance of Firmicutes including Lachnospiraceae AC2044 group, Lachnospiraceae NK4B4 group and Ruminococcaceae UCG-008, but enriched Proteobacteria including Bilophila and Sutterella, and Actinobacteria including Corynebacterium and Corynebacterium 1 which are related to NO synthesis. These data demonstrated that dietary supplementation of β-carotene may increase antioxidant enzyme activity and NO, an important vasodilator to promote the neonatal blood circulation, through regulating gut microbiota in sows.


2019 ◽  
Vol 179 (3) ◽  
pp. 385-393 ◽  
Author(s):  
Perran Boran ◽  
Hatice Ezgi Baris ◽  
Eda Kepenekli ◽  
Can Erzik ◽  
Ahmet Soysal ◽  
...  

Author(s):  
Valentin Sencio ◽  
Marina Gomes Machado ◽  
François Trottein

AbstractBacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host’s defense against viral respiratory infections. The gut microbiota’s composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota’s composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung–gut axis in coronavirus disease 2019.


2021 ◽  
Vol 9 (4) ◽  
pp. 845
Author(s):  
Loreley Castelli ◽  
Sofía Balbuena ◽  
Belén Branchiccela ◽  
Pablo Zunino ◽  
Joanito Liberti ◽  
...  

Glyphosate is the most used pesticide around the world. Although different studies have evidenced its negative effect on honey bees, including detrimental impacts on behavior, cognitive, sensory and developmental abilities, its use continues to grow. Recent studies have shown that it also alters the composition of the honey bee gut microbiota. In this study we explored the impact of chronic exposure to sublethal doses of glyphosate on the honey bee gut microbiota and its effects on the immune response, infection by Nosema ceranae and Deformed wing virus (DWV) and honey bee survival. Glyphosate combined with N. ceranae infection altered the structure and composition of the honey bee gut microbiota, for example by decreasing the relative abundance of the core members Snodgrassella alvi and Lactobacillus apis. Glyphosate increased the expression of some immune genes, possibly representing a physiological response to mitigate its negative effects. However, this response was not sufficient to maintain honey bee health, as glyphosate promoted the replication of DWV and decreased the expression of vitellogenin, which were accompanied by a reduced life span. Infection by N. ceranae also alters honey bee immunity although no synergistic effect with glyphosate was observed. These results corroborate previous findings suggesting deleterious effects of widespread use of glyphosate on honey bee health, and they contribute to elucidate the physiological mechanisms underlying a global decline of pollination services.


Sign in / Sign up

Export Citation Format

Share Document