scholarly journals Khat (Catha Edulis Forsk) induced apoptosis and cytotoxicity in cultured cells: A scoping review

Heliyon ◽  
2021 ◽  
pp. e08466
Author(s):  
Gamilah Al-Qadhi ◽  
Marwan Mansoor Ali Mohammed ◽  
Mohammed Al-Ak'hali ◽  
Essam Al-Moraissi
2006 ◽  
Vol 13 (3) ◽  
pp. 955-962 ◽  
Author(s):  
E Ferrante ◽  
C Pellegrini ◽  
S Bondioni ◽  
E Peverelli ◽  
M Locatelli ◽  
...  

Somatostatin analogs currently used in the treatment of acromegaly and other neuroendocrine tumors inhibit hormone secretion and cell proliferation by binding to somatostatin receptor type (SST) 2 and 5. The antiproliferative pathways coupled to these receptors have been only partially characterized. The aim of this study was to evaluate the effect of octreotide and super selective SST2 (BIM23120) and SST5 (BIM23206) analogs on apoptotic activity and apoptotic gene expression in human somatotroph tumor cells. Eight somatotroph tumors expressing similar levels of SST2 and SST5 evaluated by real-time PCR and western blot analyses were included in the study. In cultured cells obtained from these tumors, octreotide induced a dose-dependent increase of caspase-3 activity (160 ± 20% vs basal at 10 nM) and cleaved cytokeratin 18 levels (172 ± 25% vs basal) at concentrations higher than 0.1 nM. This effect was due to SST2 activation since BIM23120 elicited comparable responses, while BIM23206 was ineffective. BIM23120-stimulated apoptosis was dependent on phosphatases, since it was abrogated by the inhibitor orthovanadate, and independent from the induction of apoptosis-related genes, such as p53, p63, p73, Bcl-2, Bax, BID, BIK, TNFSF8, and FADD. In somatotroph tumors, both BIM23120 and BIM2306 caused growth arrest as indicated by the increase in p27 and decrease in cyclin D1 expression. In conclusion, the present study showed that octreotide-induced apoptosis in human somatotroph tumor cells by activating SST2. This effect, together with the cytostatic action exerted by both SST2 and SST5 analogs, might account for the tumor shrinkage observed in acromegalic patients treated with long-acting somatostatin analogs.


Author(s):  
Kanchana Suksri ◽  
Namoiy Semprasert ◽  
Mutita Junking ◽  
Suchanoot Kutpruek ◽  
Thawornchai Limjindaporn ◽  
...  

Long-term medication with dexamethasone (a synthetic glucocorticoid (GC) drug) results in hyperglycemia, or steroid-induced diabetes. Although recent studies revealed dexamethasone directly induces pancreatic β-cell apoptosis, its molecular mechanisms remain unclear. In our initial analysis of mRNA transcripts, we discovered the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway may be involved in dexamethasone-induced pancreatic β-cell apoptosis. In the present study, a mechanism of dexamethasone-induced pancreatic β-cell apoptosis through the TRAIL pathway was investigated in cultured cells and isolated mouse islets. INS-1 cells were cultured with and without dexamethasone in the presence or absence of a glucocorticoid receptor (GR) inhibitor, RU486. We found that dexamethasone induced pancreatic β-cell apoptosis in association with the upregulation of TRAIL mRNA and protein expression. Moreover, dexamethasone upregulated the TRAIL death receptor (DR5) protein but suppressed the decoy receptor (DcR1) protein. Similar findings were observed in mouse isolated islets: dexamethasone increased TRAIL and DR5 compared to that of control mice. Furthermore, dexamethasone stimulated pro-apoptotic signaling including superoxide production, caspase-8, -9, and -3 activities, NF-B, and Bax, but repressed the anti-apoptotic protein, Bcl-2. All these effects were inhibited by the GR-inhibitor, RU486. Furthermore, knock down DR5 decreased dexamethasone-induced caspase 3 activity. Caspase-8 and caspase-9 inhibitors protected pancreatic β-cells from dexamethasone-induced apoptosis. Taken together, dexamethasone induced pancreatic β-cell apoptosis by binding to the GR and inducing DR5 and TRAIL pathway.


2002 ◽  
Vol 76 (4) ◽  
pp. 1617-1625 ◽  
Author(s):  
O. P. Zhirnov ◽  
T. E. Konakova ◽  
T. Wolff ◽  
H.-D. Klenk

ABSTRACT Wild-type (WT) influenza A/PR/8/34 virus and its variant lacking the NS1 gene (delNS1) have been compared for their ability to mediate apoptosis in cultured cells and chicken embryos. Cell morphology, fragmentation of chromatin DNA, and caspase-dependent cleavage of the viral NP protein have been used as markers for apoptosis. Another marker was caspase cleavage of the viral M2 protein, which was also found to occur in an apoptosis-specific manner. In interferon (IFN)-competent host systems, such as MDCK cells, chicken fibroblasts, and 7-day-old chicken embryos, delNS1 virus induced apoptosis more rapidly and more efficiently than WT virus. As a consequence, delNS1 virus was also more lethal for chicken embryos than WT virus. In IFN-deficient Vero cells, however, apoptosis was delayed and developed with similar intensity after infection with both viruses. Taken together, these data indicate that the IFN antagonistic NS1 protein of influenza A viruses has IFN-dependent antiapoptotic potential.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2966-2966
Author(s):  
Zhe Zhang ◽  
Peggy A Bulur ◽  
Michael Gustafson ◽  
Dennis A. Gastineau ◽  
Allan B Dietz ◽  
...  

Abstract Background: Immune editing is a major mechanism used by tumors to promote its survival. We have reported previously the presence of a novel phenotype of immunosuppressive monocytes (CD14+HLA-DRlow/neg) in a number of cancers. Increased presence of these cells was associated with decreased treatment response and OS. We have demonstrated that certain tumor cells can convert normal CD14+HLA-DR+ monocytes to CD14+HLA-DRlow/neg phenotype in an IL-10 independent and a tumor specific way. These CD14+HLA-DRlow/neg monocytes, in turn, protect tumors from cytotoxic killing from chemotherapy. Here we report up-regulation of heat shock protein-27 (HSP27) as one mechanism mediating this effect. Method: Monocytes from healthy donors were co-cultured with lymphoma cell lines (OCI-Ly3, Jeko-1, and Granta-519) with or without doxorubicin (DOX). Cultured cells were assessed for phenotype, viability and proliferation by flow cytometry. Lymphoma cells were isolated with anti-CD19 immunomagnetic beads and assayed by immunoblot for expressions of proteins regulating apoptosis. HSP27 levels in human plasma were measured by ELISA. Results: DOX incubation induced apoptosis and decreased viability of all three cell lines; and co-culture with monocytes improved the lymphoma cell survival (for example, untreated Granta-519 had a 2.1±0.45 fold expansion, that was reduced to 0.39±0.12 when treated with DOX and 0.81±0.27 after co-culture with monocytes with DOX. p<0.05, n=11.) Co-culture with monocytes induced increased HSP27 expression in lymphoma cells. HSP27 levels were further increased in co-culture with monocytes and DOX, with corresponding decrease in cleaved Caspase-3 levels. As tumor cells can secrete HSP27, we found detectable levels of HSP27 in plasma of lymphoma patients. Increased HSP27 in plasma correlated with increased proportion of CD14+HLA-DRlow/neg monocytes in blood. Conclusions: We have found that monocytes may promote lymphoma resistance to DOX killing by inducing increased HSP27. In turn, HSP27 from lymphoma patients may induce immune suppressive phenotype in monocytes. Together, this data demonstrates an active cross talk between monocytes and lymphoma resulting in multiple mechanisms of tumor resistance to chemo-immunotherapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3208-3208
Author(s):  
Katharina Foerster ◽  
Carl Philipp Simon-Gabriel ◽  
Dorothee Bleckmann ◽  
Marco Benkisser-Petersen ◽  
Nicolas Thornton ◽  
...  

Abstract Introduction: In recent years, the emergence of kinase inhibitors has drastically altered treatment strategies and improved outcomes in CLL patients, but lack of cure and resistance to therapy still remain serious issues. The transcription factor NF-κB influences several cellular functions such as proliferation, apoptosis and inflammation and is known as a key factor contributing to CLL development and progression. NF-κB is constitutively active in CLL and the NF-κB subunit RELA has been proposed as a prognostic marker in CLL with high RELA DNA-binding activity being predictive of short time to first treatment and overall survival. Therefore, NF-κB has gained attention as a promising therapeutic target. NF-kB inhibition induces apoptosis in CLL cells in vitro. However, whether this effect pertains in vivoremains unclear. Since the microenvironment is crucial for CLL cell viability circumventing apoptosis, we tested whether NF-κB inhibition modulates CLL viability in the presence of the microenvironment. Methods: The specific NF-κB inhibitor Dehydroxymethylepoxyquinomicin (DHMEQ) was used alone (2-5 µg/ml) or combined with fludarabine (10 µM), rhBAFF (50 ng/ml), rhAPRIL (500 ng/ml), rhSDF-1a (100 ng/ml) or CD40 ligand (1 µg/ml) on primary CLL cells cultured alone (monoculture) or on bone marrow stromal cells (BMSC) (co-culture with a ratio of 20 CLL cells per stromal cell) for 48-144 h. Viability and apoptosis were measured by flow cytometry using AnnexinV/PI stainings. Protein expression was analyzed by western blot using standard protocols. NF-κB DNA-binding activity after DHMEQ treatment (5 µg/ml) for 6 h was measured by ELISA for all subunits using 1 µg of protein lysate for the NF-κB1 subunit and 10 µg protein lysate for the subunits RELA, NF-κB2, RELB and c-REL. RELA gene knockdown was performed by siRNA transfection (2 µM targeting and non-targeting siRNA). Results: NF-κB inhibition using DHMEQ led to apoptosis in monocultured CLL cells (viability 74% vs. 24%, n=17, p<0.0001) but surprisingly had no effect on cell viability of cells co-cultured with BMSC (viability 96% vs. 95%, p=0.9995). In monoculture, apoptosis induction was accompanied by downregulation of the NF-κB target protein TRAF1 (untreated vs. treated: expression reduced by 34 %, p=0,0044), upregulation of the proapoptotic protein BAX (expression increased by 3175 %, p=0,0268), and increased PARP cleavage (100% vs. 8393% expression, p=0,0078). Conversely, in co-culture, downregulation of TRAF1 by 52 % (p=0,0054) was observed without concomitant BAX upregulation or PARP cleavage matching the non-appearance of apoptosis induction in those cells. While co-culturing untreated CLL cells on BMSC led to tendentially increased expression levels of the non-canonical NF-κB subunits NF-κB2 (untreated monocultured cells vs. untreated co-cultured cells: 100% vs. 142%, p=0,8438) and RELB (100% vs. 128%, p=0,7422), NF-κB DNA-binding activities of all NF-κB subunits were equally suppressed by DHMEQ treatment in mono- and co-cultured cells (e.g. treated monocultured vs. treated co-cultured cells: 1,6% vs. 4,9%, p<0,9999 for NF-κB1). Gene knockdown of the NF-κB subunit RELA by siRNA transfection solely induced apoptosis in monocultured CLL cells as well. Adding soluble BAFF to monocultured treated CLL cells attenuated DHMEQ efficiency (viability 1,3% vs. 16%, p=0,0258, n=9), while adding APRIL, CD40 ligand and SDF-1a had little influence on the response to treatment. Finally, the combined use of DHMEQ with fludarabine in co-cultured CLL cells led to a higher rate of apoptosis than DHMEQ (viability 57% vs. 37%, p=0.0202) or fludarabine alone (viability 50% vs. 37%, p=0.1828). Conclusion: NF-κB inhibition in primary CLL cells shows great discrepancy between in vitro and in vivo scenarios. While DHMEQ treatment leads to apoptosis in mono-cultured cells by BAX upregulation and increased PARP cleavage, CLL cell viability is not affected in the presence of microenvironment, suggesting that the NF-κB pathway can be bypassed in vivo. Soluble ligands, especially BAFF, appear to be involved in mediating this protective effect. However, the combination of NF-κB inhibition with standard chemotherapy might represent a promising approach and warrants further clinical assessment. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 209 (5) ◽  
pp. 1029-1047 ◽  
Author(s):  
Pierre-Emmanuel Joubert ◽  
Scott W. Werneke ◽  
Claire de la Calle ◽  
Florence Guivel-Benhassine ◽  
Alessandra Giodini ◽  
...  

Autophagy is an important survival pathway and can participate in the host response to infection. Studying Chikungunya virus (CHIKV), the causative agent of a major epidemic in India, Southeast Asia, and southern Europe, we reveal a novel mechanism by which autophagy limits cell death and mortality after infection. We use biochemical studies and single cell multispectral assays to demonstrate that direct infection triggers both apoptosis and autophagy. CHIKV-induced autophagy is mediated by the independent induction of endoplasmic reticulum and oxidative stress pathways. These cellular responses delay apoptotic cell death by inducing the IRE1α–XBP-1 pathway in conjunction with ROS-mediated mTOR inhibition. Silencing of autophagy genes resulted in enhanced intrinsic and extrinsic apoptosis, favoring viral propagation in cultured cells. Providing in vivo evidence for the relevance of our findings, Atg16LHM mice, which display reduced levels of autophagy, exhibited increased lethality and showed a higher sensitivity to CHIKV-induced apoptosis. Based on kinetic studies and the observation that features of apoptosis and autophagy were mutually exclusive, we conclude that autophagy inhibits caspase-dependent cell death but is ultimately overwhelmed by viral replication. Our study suggests that inducers of autophagy may limit the pathogenesis of acute Chikungunya disease.


1998 ◽  
Vol 275 (1) ◽  
pp. L14-L20 ◽  
Author(s):  
Leo E. Otterbein ◽  
Beek Yoke Chin ◽  
Lin L. Mantell ◽  
Leah Stansberry ◽  
Stuart Horowitz ◽  
...  

Accumulating evidence demonstrates that genotoxic and oxidant stress can induce programmed cell death or apoptosis in cultured cells. However, little is known about whether oxidative stress resulting from the deleterious effects of hyperoxia can induce apoptosis in vivo and even less is known regarding the functional significance of apoptosis in vivo in response to hyperoxia. Using hyperoxia as a model of oxidant-induced lung injury in the rat, we show that hyperoxic stress results in marked apoptotic signals in the lung. Lung tissue sections obtained from rats exposed to hyperoxia exhibit increased apoptosis in a time-dependent manner by terminal transferase dUTP nick end labeling assays. To examine whether hyperoxia-induced apoptosis in the lung correlated with the extent of lung injury or tolerance (adaptation) to hyperoxia, we investigated the pattern of apoptosis with a rat model of age-dependent tolerance to hyperoxia. We show that apoptosis is associated with increased survival of aged rats to hyperoxia and with decreased levels of lung injury as measured by the volume of pleural effusion, wet-to-dry lung weight, and myeloperoxidase content in aged rats compared with young rats after hyperoxia. We also examined this relationship in an alternate model of tolerance to hyperoxia. Lipopolysaccharide (LPS)-treated young rats not only demonstrated tolerance to hyperoxia but also exhibited a significantly lower apoptotic index compared with saline-treated rats after hyperoxia. To further separate the effects of aging and tolerance, we show that aged rats pretreated with LPS did not exhibit a significant level of tolerance against hyperoxia. Furthermore, similar to the hyperoxia-tolerant LPS-pretreated young rats, the nontolerant LPS-pretreated aged rats also exhibited a significantly reduced apoptotic index compared with aged rats exposed to hyperoxia alone. Taken together, our data suggest that hyperoxia-induced apoptosis in vivo can be modulated by both aging and tolerance effects. We conclude that there is no overall relationship between apoptosis and tolerance.


Blood ◽  
2005 ◽  
Vol 106 (13) ◽  
pp. 4131-4138 ◽  
Author(s):  
Miriam Erlacher ◽  
Ewa M. Michalak ◽  
Priscilla N. Kelly ◽  
Verena Labi ◽  
Harald Niederegger ◽  
...  

Numerous p53 target genes have been implicated in DNA damage–induced apoptosis signaling, but proapoptotic Bcl-2 (B-cell leukemia 2) family members of the BH3 (Bcl-2 homolog region [BH] 3)–only subgroup appear to play the critical initiating role. In various types of cultured cells, 3 BH3-only proteins, namely Puma (p53 up-regulated modulator of apoptosis), Noxa, and Bim (Bcl-2 interacting mediator of cell death), have been shown to initiate p53-dependent as well as p53-independent apoptosis in response to DNA damage and treatment with anticancer drugs or glucocorticoids. In particular, the absence of Puma or Bim renders thymocytes and mature lymphocytes refractory to varying degrees to death induced in vitro by growth factor withdrawal, DNA damage, or glucocorticoids. To assess the in vivo relevance of these findings, we subjected mice lacking Puma, Noxa, or Bim to whole-body γ-radiation or the glucocorticoid dexamethasone and compared lymphocyte survival with that in wild-type and BCL2–transgenic mice. Absence of Puma or Bcl-2 overexpression efficiently protected diverse types of lymphocytes from the effects of γ-radiation in vivo, and loss of Bim provided lower but significant protection in most lymphocytes, whereas Noxa deficiency had no impact. Furthermore, both Puma and Bim were found to contribute significantly to glucocorticoid-induced killing. Our results thus establish that Puma and Bim are key initiators of γ-radiation– and glucocorticoid-induced apoptosis in lymphoid cells in vivo.


2002 ◽  
Vol 22 (10) ◽  
pp. 3373-3388 ◽  
Author(s):  
Maofu Fu ◽  
Chenguang Wang ◽  
Jian Wang ◽  
Xueping Zhang ◽  
Toshiyuki Sakamaki ◽  
...  

ABSTRACT The androgen receptor (AR) is a nuclear hormone receptor superfamily member that conveys both trans repression and ligand-dependent trans-activation function. Activation of the AR by dihydrotestosterone (DHT) regulates diverse physiological functions including secondary sexual differentiation in the male and the induction of apoptosis by the JNK kinase, MEKK1. The AR is posttranslationally modified on lysine residues by acetylation and sumoylation. The histone acetylases p300 and P/CAF directly acetylate the AR in vitro at a conserved KLKK motif. To determine the functional properties governed by AR acetylation, point mutations of the KLKK motif that abrogated acetylation were engineered and examined in vitro and in vivo. The AR acetylation site point mutants showed wild-type trans repression of NF-κB, AP-1, and Sp1 activity; wild-type sumoylation in vitro; wild-type ligand binding; and ligand-induced conformational changes. However, acetylation-deficient AR mutants were selectively defective in DHT-induced trans activation of androgen-responsive reporter genes and coactivation by SRC1, Ubc9, TIP60, and p300. The AR acetylation site mutant showed 10-fold increased binding of the N-CoR corepressor compared with the AR wild type in the presence of ligand. Furthermore, histone deacetylase 1 (HDAC1) bound the AR both in vivo and in cultured cells and HDAC1 binding to the AR was disengaged in a DHT-dependent manner. MEKK1 induced AR-dependent apoptosis in prostate cancer cells. The AR acetylation mutant was defective in MEKK1-induced apoptosis, suggesting that the conserved AR acetylation site contributes to a pathway governing prostate cancer cellular survival. As AR lysine residue mutations that abrogate acetylation correlate with enhanced binding of the N-CoR repressor in cultured cells, the conserved AR motif may directly or indirectly regulate ligand-dependent corepressor disengagement and, thereby, ligand-dependent trans activation.


Sign in / Sign up

Export Citation Format

Share Document