scholarly journals UAVs fleet mission planning robust to changing weather conditions

2020 ◽  
Vol 53 (2) ◽  
pp. 10518-10524
Author(s):  
Grzegorz Bocewicz ◽  
Grzegorz Radzki ◽  
Izabela Nielsen ◽  
Marcin Witczak ◽  
Banaszak Zbigniew
2021 ◽  
Vol 2 (4) ◽  
pp. 1-20
Author(s):  
Ahmed Boubrima ◽  
Edward W. Knightly

In this article, we first investigate the quality of aerial air pollution measurements and characterize the main error sources of drone-mounted gas sensors. To that end, we build ASTRO+, an aerial-ground pollution monitoring platform, and use it to collect a comprehensive dataset of both aerial and reference air pollution measurements. We show that the dynamic airflow caused by drones affects temperature and humidity levels of the ambient air, which then affect the measurement quality of gas sensors. Then, in the second part of this article, we leverage the effects of weather conditions on pollution measurements’ quality in order to design an unmanned aerial vehicle mission planning algorithm that adapts the trajectory of the drones while taking into account the quality of aerial measurements. We evaluate our mission planning approach based on a Volatile Organic Compound pollution dataset and show a high-performance improvement that is maintained even when pollution dynamics are high.


2016 ◽  
Vol 13 (10) ◽  
pp. 6967-6973 ◽  
Author(s):  
Yongming He ◽  
Lei He ◽  
Yuan Wang ◽  
Yu Xiao ◽  
Yingwu Chen ◽  
...  

During the observations made by imaging satellites, meteorological factors are likely to change frequently. The vagaries of weather conditions and significant effects on the actual observation results mean that there is an urgent need to apply more intelligence to satellite mission planning. Thus, this paper describes an autonomous replanning method for imaging satellites that considers the real-time weather conditions. Considering the characteristics of different input data, this method replans the low-yield task set and fine-tunes others to improve profitability. Moreover, the proposed method can heuristically select the appropriate adjustment rule to achieve autonomous satellite mission planning. A series of simulations with various task quantities and in different environments shows that the proposed method can respond effectively to real-time weather changes, and can steadily improve the total profits in a variety of weather conditions during Earth observation activities.


2019 ◽  
Vol 9 (19) ◽  
pp. 3972 ◽  
Author(s):  
Thibbotuwawa ◽  
Bocewicz ◽  
Zbigniew ◽  
Nielsen

With a rising demand for utilizing unmanned aerial vehicles (UAVs) to deliver materials in outdoor environments, particular attention must be given to all the different aspects influencing the deployment of UAVs for such purposes. These aspects include the characteristics of the UAV fleet (e.g. size of fleet, UAV specifications and capabilities), the energy consumption (highly affected by weather conditions and payload) and the characteristics of the network and customer locations. All these aspects must be taken into account when aiming to achieve deliveries to customers in a safe and timely manner. However, at present, there is a lack of decision support tools and methods for mission planners that consider all these influencing aspects together. To bridge this gap, this paper presents a decomposed solution approach, which provides decision support for UAVs’ fleet mission planning. The proposed approach assists flight mission planners in aerospace companies to select and evaluate different mission scenarios, for which flight-mission plans are obtained for a given fleet of UAVs, while guaranteeing delivery according to customer requirements in a given time horizon. Mission plans are analyzed from multiple perspectives including different weather conditions (wind speed and direction), payload capacities of UAVs, energy capacities of UAVs, fleet sizes, the number of customers visited by a UAV on a mission and delivery performance. The proposed decision support-driven declarative model supports the selection of the UAV mission planning scenarios subject to variations on all these configurations of the UAV system and variations in the weather conditions. The computer simulation based experimental results, provides evidence of the applicability and relevance of the proposed method. This ultimately contributes as a prototype of a decision support system of UAVs fleet-mission planning, able to determine whether is it possible to find a flight-mission plan for a given fleet of UAVs guaranteeing customer satisfaction under the given conditions. The mission plans are created in such a manner that they are suitable to be sent to Air Traffic Control for flight approval.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 515 ◽  
Author(s):  
Amila Thibbotuwawa ◽  
Grzegorz Bocewicz ◽  
Grzegorz Radzki ◽  
Peter Nielsen ◽  
Zbigniew Banaszak

Fleet mission planning for Unmanned Aerial Vehicles (UAVs) is the process of creating flight plans for a specific set of objectives and typically over a time period. Due to the increasing focus on the usage of large UAVs, a key challenge is to conduct mission planning addressing changing weather conditions, collision avoidance, and energy constraints specific to these types of UAVs. This paper presents a declarative approach for solving the complex mission planning resistant to weather uncertainty. The approach has been tested on several examples, analyzing how customer satisfaction is influenced by different values of the mission parameters, such as the fleet size, travel distance, wind direction, and wind speed. Computational experiments show the results that allow assessing alternative strategies of UAV mission planning.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1630
Author(s):  
Jane Jean Kiam ◽  
Eva Besada-Portas ◽  
Axel Schulte

Unmanned Aerial Vehicles (UAVs) are gaining preference for mapping and monitoring ground activities, partially due to the cost efficiency and availability of lightweight high-resolution imaging sensors. Recent advances in solar-powered High Altitude Pseudo-Satellites (HAPSs) widen the future use of multiple UAVs of this sort for long-endurance remote sensing, from the lower stratosphere of vast ground areas. However, to increase mission success and safety, the effect of the wind on the platform dynamics and of the cloud coverage on the quality of the images must be considered during mission planning. For this reason, this article presents a new planner that, considering the weather conditions, determines the temporal hierarchical decomposition of the tasks of several HAPSs. This planner is supported by a Multiple Objective Evolutionary Algorithm (MOEA) that determines the best Pareto front of feasible high-level plans according to different objectives carefully defined to consider the uncertainties imposed by the time-varying conditions of the environment. Meanwhile, the feasibility of the plans is assured by integrating constraints handling techniques in the MOEA. Leveraging historical weather data and realistic mission settings, we analyze the performance of the planner for different scenarios and conclude that it is capable of determining overall good solutions under different conditions.


Author(s):  
Gregory W. Characklis ◽  
Mackenzie J. Dilts ◽  
Otto D. Simmons ◽  
Leigh-Anne H. Krometis ◽  
Christina Likirdopulos ◽  
...  

2020 ◽  
pp. 67-78
Author(s):  
Nandan Kumar ◽  
Sainath Shrikant Pawaskar

Flash fire caused by electric arc is different than that caused by flammable liquids/fumes or combustible dusts. A suitable protective clothing for protection against electric arc-flash must be designed as per Indian weather conditions. Currently available garments are manufactured using two or three layers of woven/nonwoven combinations to achieve higher Hazard Risk Category (HRC) rating (level 3 and above). However, they are heavy and not comfortable to the end users. Savesplash® is a single layer inherent flame-retardant knitted fabric. Its arc rating was determined using ASTM standards. It achieved arc thermal performance value (ATPV) of 41 cal/cm2, breakopen threshold energy (E_BT) of 42 cal/cm2 and heat attenuation factor (HAF) of 94% when tested as per ASTM F1959/F1959M-14 which translated into an arc rating of 41 cal/cm2. This is equivalent to HRC level 4 ratings as per National Fire Protection Association’s NFPA 70E standard (USA). Further, cut and sewn gloves (HM-100) developed using Savesplash® fabric reinforced with leather on palm area achieved ATPV of 63 cal/cm2 and HAF of 94.5% when tested as per ASTM F2675/F2675M-13.


Author(s):  
Georgiy Gulyuk ◽  
Aleksey Ivanov ◽  
Yuri Yanko

Current situation and agricultural management on the non-black earth area of Russia arebeing gradually worsen by the negative natural factors such as a significant increase of weather based climatic abnormal risks, deterioration of agro-meliorative conditions of agricultural lands because of colonization by tree and shrubbery vegetation and secondary bog formation, hidden degradation of soil fertility. When combined with functional loss of ameliorative complex and meliorative systems amortization, regional agriculture adaptation possibilities were rapidly limited. Production shortfall due no abnormal weather conditions for particular field crops was 19…48% during last five years, level of business realization of bioclimatic potential on a field was decreased by 7…12%.The complete realization of regional agricultural adaptive potential to weather based climatic changes and limitation of greenhouse gases emissions is possible on a basis of regeneration ofalll functions and aspects of ameliorative complex management. Toward this goal the coordinated actions of federal and regional management of Agricultural Complex, Scientific and Educational institutions, project foundations and managers are needed in a relation to human resources, scientific and regulatory supply. Any incomplete treatment in these fields inherent in visual negative consequences for food security and social economic development of rural areas of non-black earth zones not only at the current historical moment, but in a future also. Fundamental influence of solving of these problems deserves to scientific supply of innovative ameliorative complex, renewal of which should be based on principals of resources and energy preservation, nature management, computerization and digitalization management. During a long term research it was established that increase of average vegetation period temperature by lоСhas increased productivity of winter wheat, barley and summer wheat in average on 0,7 tons per ha, winter wheat and oat on 0,4 tons per ha, potatoes – 8,2 tons per ha, edible roots-6,4 tons per ha, cabbage 9,8 tons per ha, dry basis of herbage of multi and one age grasses–0,5 and 0,7 tons per ha. Increase of СО2 Concentration from 0,35 to 0,45% during last twenty years contributed into grow of yield in regional agriculture which can be estimated as 0,3 tons per ha per measure; searching remedy for agroclimatical risks decreasing production became drainage and irrigation systems (decrease 3…5 times);new method of reclamation of abandoned areas with transformation of biomass of tree and shrubbery vegetation into biochar makes it possible to decrease СО2 emissions up to times and get an adverse balance of СО2;secondary reclamation of lands covered by trees and shrubbery on area of 22ha used for vegetables and area of 37ha used for forage crops could supply a farmer with work and revenue sufficient for maintenance of one child what is on the major facts of population declaim in rural areas.


2020 ◽  
Vol 0 (6) ◽  
pp. 13-19
Author(s):  
Guzel Gumerova ◽  
Georgiy Gulyuk ◽  
Dmitry Kucher ◽  
Anatoly Shuravilin ◽  
Elena Piven

Data of long-term researches (2015–2018) in southern forest-steppe zone of the Republic of Bashkortostan, is justified theoretically and experimentally the mode of irrigation of potatoes on leached chernozems of unsatisfactory, satisfactory and good ameliorative condition of irrigated lands. For the growing periods of potatoes with different heat and moisture supply, the number of watering, the timing of their implementation, irrigation and irrigation norms are established. On lands with unsatisfactory meliorative state the number of irrigation depending on weather conditions of potato vegetation period varied from 0 to 3 (1.5 on average) with average irrigation norm – 990 m3/ha. With satisfactory meliorative state of lands the number of irrigation on average increased from 0 to 4 (2.3 on average) with irrigation norm – 1305 m3/ha. On lands with good meliorative state the number of irrigation was the highest – from 1 to 5 (3 on average) with average irrigation irrigation norm is 1653 m3/ha. It was noted that in the dry periods of potato vegetation the greatest number of watering was carried out (3–5 watering), and in the wet periods (2017) watering was not carried out except for the area with a good reclamation state, where only one irrigation was carried out by the norm of 550 m3/ha. Water consumption of potato was studied in dynamics as a whole during the growing season and the months of the growing season depending on weather conditions of vegetation period and land reclamation condition of irrigated lands, as well as in the control (without irrigation). The lowest total water consumption was in the area without irrigation and averaged 226.8 mm. In irrigated areas, its values increased to 319-353.4 mm. The average daily water consumption varied from 2.12 to 3.3 mm. The highest rates of potato water consumption were observed in June and July, and the lowest – in May and August. In the total water consumption of potatoes on the site without irrigation, the largest share was occupied by atmospheric precipitation and in addition to them the arrival of moisture from the soil. Irrigation water was used in irrigated areas along with precipitation, the share of which was 30.2–46.1 %.


Sign in / Sign up

Export Citation Format

Share Document