Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview

2010 ◽  
Vol 32 (6) ◽  
pp. 898-907 ◽  
Author(s):  
Yuri Estrin ◽  
Alexei Vinogradov
2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


2008 ◽  
Vol 584-586 ◽  
pp. 182-187
Author(s):  
Lilia Kurmanaeva ◽  
Yulia Ivanisenko ◽  
J. Markmann ◽  
Ruslan Valiev ◽  
Hans Jorg Fecht

Investigations of mechanical properties of nanocrystalline (nc) materials are still in interest of materials science, because they offer wide application as structural materials thanks to their outstanding mechanical properties. NC materials demonstrate superior hardness and strength as compared with their coarse grained counterparts, but very often they possess a limited ductility or show low uniform elongation due to poor strain hardening ability. Here, we present the results of investigation of the microstructure and mechanical properties of nc Pd and Pd-x%Ag (x=20, 60) alloys. The initially coarse grained Pd-x% Ag samples were processed by high pressure torsion, which resulted in formation of homogenous ultrafine grain structure. The increase of Ag contents led to the decrease of the resulted grain size and change in deformation behavior, because of decreasing of stacking fault energy (SFE). The samples with larger Ag contents demonstrated the higher values of hardness, yield stress and ultimate stress. Remarkably the uniform elongation had also increased with increase of strength.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1621-1626
Author(s):  
HYOUNG SEOP KIM

The technique of severe plastic deformation (SPD) enables one to produce metals and alloys with an ultrafine grain size of about 100 nm and less. As the mechanical properties of such ultrafine grained materials are governed by the plastic deformation during the SPD process, the understanding of the stress and strain development in a workpiece is very important for optimizing the SPD process design and for microstructural control. The objectives of this work is to present a constitutive model based on the dislocation density and dislocation cell evolution for large plastic strains as applied to equal channel angular pressing (ECAP). This paper briefly introduces the constitutive model and presents the results obtained with this model for ECAP by the finite element method.


2021 ◽  
Vol 1 (2) ◽  
pp. 25-31
Author(s):  
HS Siddesha ◽  
Suhaaskapardhi BS ◽  
Goutham C

Severe Plastic Deformation (SPD) processes are for developing ultrafine grained (UFG) structured materials for different Industrial applications. Cyclic Constrained Groove Pressing (CCGP) is a technique, produce fine grained structures in metallic sheets or plates in mass production. The objective of research work is to investigate the influence of CCGP processing on the super plastic behaviour of an Aluminium alloy. Samples in “ascast” materials processed by CCGP with as cast, 1, 2, 3 and 4 passes. Processed Material study for microhardness and Tensile strength mechanical properties test were done for different test specimens. Grain refinement, microhardness and Tensile strength increased with the number of CCGP passes.


2007 ◽  
Vol 546-549 ◽  
pp. 917-922
Author(s):  
Bao Lin Wu ◽  
Gui Ying Sha ◽  
Yi Nong Wang ◽  
Yu Dong Zhang ◽  
Claude Esling

Heavy deformation plus micro alloying could be an effective way to obtain ultrafine grain structure of metals. In the present work, an Al-Cu-Mg alloy was microalloyed with Zr to obtain homogeneous precipitates and then heavily deformed by conventional forging at high temperature. The possible refining processing routes were studied and the superplasticity behaviors of the alloy was investigated. Results show that the micro alloyed alloy can be stably refined to 3-5μm under conventional processing routes. The Al-3Zr precipitates act both as additional sites to enhance recrystallization nucleation rate and pins to impede grain growth to increase the thermal stability of the fine grain structure. However, as the Al3Zr precipitates remains along grain boundaries, the superplastic capability of the material is not high. At 430°C with 1×10-4S-1 strain rate, the elongation obtained was 260%.


2015 ◽  
Vol 1127 ◽  
pp. 91-97 ◽  
Author(s):  
Stanislav Rusz ◽  
Lubomír Čížek ◽  
Vít Michenka ◽  
Jan Dutkiewicz ◽  
Michal Salajka ◽  
...  

DRECE - Dual Rolls Equal Channel Extrusion" (dual rolls pressure combined with equal channel extrusion) method is used for production of metallic materials with very fine grain size (hereinafter referred to as UFG structure - Ultrafine Grain Size). During the actual forming process the principle of severe plastic deformation is used. The device is composed of the following main parts: “Nord” type gearbox, electric motor with frequency speed converter, multi-plate clutch, feed roller and pressure rollers with regulation of thrust, and of the forming tool itself – made of Dievar steel type. Metallic strip with dimensions 58×2×1000 mm (width x thickness x length) is inserted into the device. During the forming process the main cylinder in synergy with the pressure roller extrude the material through the forming tool without any change of cross section of the strip. In this way a significant refinement of grain is achieved by severe plastic deformation. This method is used for various types of metallic materials, non-ferrous metals and their alloys. Forming process is based on extrusion technology with zero reduction of thickness of the sheet metal with the ultimate aim - achieving a high degree of deformation in the formed material. The DRECE device is also being verified from the viewpoint of achievement of a UFG structure in a blank of circular cross-section (wire) with diameter of ø 8 mm × 1000 mm (length).


2014 ◽  
Vol 14 (2) ◽  
pp. 57-62
Author(s):  
M. Szymaneka ◽  
B. Augustyn ◽  
D. Kapinos ◽  
S. Boczkal ◽  
J. Nowak

Abstract In the aluminium alloy family, Al-Zn materials with non-standard chemical composition containing Mg and Cu are a new group of alloys, mainly owing to their high strength properties. Proper choice of alloying elements, and of the method of molten metal treatment and casting enable further shaping of the properties. One of the modern methods to produce materials with submicron structure is a method of Rapid Solidification. The ribbon cast in a melt spinning device is an intermediate product for further plastic working. Using the technique of Rapid Solidification it is not possible to directly produce a solid structural material of the required shape and length. Therefore, the ribbon of an ultrafine grain or nanometric structure must be subjected to the operations of fragmentation, compaction, consolidation and hot extrusion. In this article the authors focussed their attention on the technological aspect of the above mentioned process and described successive stages of the fabrication of an AlZn9Mg2.5Cu1.8 alloy of ultrafine grain structure designated for further plastic working, which enables making extruded rods or elements shaped by the die forging technology. Studies described in the article were performed under variable parameters determined experimentally in the course of the alloy manufacturing process, including casting by RS and subsequent fragmentation.


2016 ◽  
Vol 716 ◽  
pp. 692-699 ◽  
Author(s):  
Alexander Pesin ◽  
Denis Pustovoytov

Aluminum and its alloys are widely used as structural materials in aerospace, automotive and other industries due to low density and high specific strength. Efficient way to increase strength and other properties of aluminum alloys is to form an ultra fine grain structure using severe plastic deformation methods. Cryogenic asymmetric sheet rolling under liquid nitrogen temperature is a process of severe plastic deformation that can be used to improve the aluminum alloys structure and properties. Prediction of sheet temperature during plastic deformation is very important. The temperature of sheet is changed due to the conversion of mechanical work of deformation into heat through sliding on contact surfaces. This paper presents the results of the finite element simulation of heat transfer during cryogenic asymmetric sheet rolling of aluminum alloy 6061. The effect of thickness reduction, rolling velocity and friction coefficient on the deformation heating and temperature field of aluminum alloy 6061 was found. The results of investigation could be useful for the development of the optimal treatment process of aluminum alloys by cryogenic severe plastic deformation to obtain the ultra fine grain structure and high strength properties.


Sign in / Sign up

Export Citation Format

Share Document