High prevalence of mcr-1 encoding colistin resistance and first identification of blaCTX-M-55 in ESBL/CMY-2-producing Escherichia coli isolated from chicken faeces and retail meat in Tunisia

2020 ◽  
Vol 318 ◽  
pp. 108478 ◽  
Author(s):  
Bilel Hassen ◽  
Mohamed Salah Abbassi ◽  
Laura Ruiz-Ripa ◽  
Olouwafemi M. Mama ◽  
Abdennaceur Hassen ◽  
...  
2017 ◽  
Vol 8 ◽  
Author(s):  
Xianhui Huang ◽  
Linfeng Yu ◽  
Xiaojie Chen ◽  
Chanping Zhi ◽  
Xu Yao ◽  
...  

2016 ◽  
Vol 21 (8) ◽  
Author(s):  
Raoudha Grami ◽  
Wejdene Mansour ◽  
Wahib Mehri ◽  
Olfa Bouallègue ◽  
Noureddine Boujaâfar ◽  
...  

We report a high prevalence of MCR-1 and CTX-M-1-producing Escherichia coli in three Tunisian chicken farms. Chickens were imported from France or derived from French imported chicks. The same IncHI2-type plasmid reported to carry those genes in cattle in France and in a food sample in Portugal was found in Tunisian chickens of French origin. This suggests a significant impact of food animal trade on the spread of mcr-1-mediated colistin resistance in Europe.


2016 ◽  
Vol 82 (13) ◽  
pp. 3727-3735 ◽  
Author(s):  
Nhung T. Nguyen ◽  
Hoa M. Nguyen ◽  
Cuong V. Nguyen ◽  
Trung V. Nguyen ◽  
Men T. Nguyen ◽  
...  

ABSTRACTAntimicrobial resistance (AMR) is a global health problem, and emerging semi-intensive farming systems in Southeast Asia are major contributors to the AMR burden. We accessed 12 pig and chicken farms at key stages of production in Tien Giang Province, Vietnam, to measure antimicrobial usage and to investigate the prevalence of AMR to five critical antimicrobials (β-lactams, third-generation cephalosporins, quinolones, aminoglycosides, and polymyxins) and their corresponding molecular mechanisms among 180Escherichia coliisolates. Overall, 94.7 mg (interquartile range [IQR], 65.3 to 151.1) and 563.6 mg (IQR, 398.9 to 943.6) of antimicrobials was used to produce 1 kg (live weight) of chicken and pig, respectively. A median of 3 (out of 8) critical antimicrobials were used on pig farms.E. coliisolates exhibited a high prevalence of resistance to ampicillin (97.8% and 94.4% for chickens and pigs, respectively), ciprofloxacin (73.3% and 21.1%), gentamicin (42.2% and 35.6%), and colistin (22.2% and 24.4%). The prevalence of a recently discovered colistin resistance gene,mcr-1, was 19 to 22% and had strong agreement with phenotypic colistin resistance. We conducted plasmid conjugation experiments with 37mcr-1gene-positiveE. coliisolates and successfully observed transfer of the gene in 54.0% of isolates through a plasmid of approximately 63 kb, consistent with one recently identified in China. We found no significant correlation between total use of antimicrobials at the farm level and AMR. These data provide additional insight into the role ofmcr-1in colistin resistance on farms and outline the dynamics of phenotypic and genotypic AMR in semi-intensive farming systems in Vietnam.IMPORTANCEOur study provides accurate baseline information on levels of antimicrobial use, as well as on the dynamics of phenotypic and genotypic resistance for antimicrobials of critical importance amongE. coliover the different stages of production in emerging pig and poultry production systems in Vietnam.E. coliisolates showed a high prevalence of resistance (>20%) to critically important antimicrobials, such as colistin, ciprofloxacin, and gentamicin. The underlying genetic mechanisms identified for colistin (themcr-1gene) and quinolone (gyrAgene mutations) are likely to play a major role in AMR to those compounds. Conjugation experiments led to the identification of a 63-kb plasmid, similar to one recently identified in China, as the potential carrier of themcr-1gene. These results should encourage greater restrictions of such antimicrobials in Southeast Asian farming systems.


2016 ◽  
Vol 45 ◽  
pp. 1-5 ◽  
Author(s):  
Lucía Galli ◽  
Victoria Brusa ◽  
Pallavi Singh ◽  
Angel Adrián Cataldi ◽  
Shannon Manning ◽  
...  

2021 ◽  
Vol 417 ◽  
pp. 125951
Author(s):  
Xiaomin Shi ◽  
Yiming Li ◽  
Yuying Yang ◽  
Zhangqi Shen ◽  
Chang Cai ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5905
Author(s):  
Olivia M. Grünzweil ◽  
Lauren Palmer ◽  
Adriana Cabal ◽  
Michael P. Szostak ◽  
Werner Ruppitsch ◽  
...  

Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant β-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-β-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Chibuzor M. Nsofor ◽  
Mirabeau Y. Tattfeng ◽  
Chijioke A. Nsofor

Abstract Background This study was aimed to determine the prevalence of qnr genes among fluoroquinolone-resistant Escherichia coli (FREC) isolates from Nigeria. Antimicrobial susceptibility testing was performed by disc diffusion technique. Polymerase chain reaction was used to identify Escherichia coli (E. coli) and for the detection of qnr genes. Results A total of 206 non-duplicate E. coli were isolated from 300 clinical specimens analyzed. In all, 30 (14.6%) of these isolates were FREC; the resistance to fluoroquinolones among these 30 FREC showed 80% (24), 86.7% (26), 86.7% (26), 100% (30), 86.7% (26), 93.3% (28) and 86.7% (26) were resistant to pefloxacin, ciprofloxacin, sparfloxacin, levofloxacin, nalidixic acid, ofloxacin and moxifloxacin, respectively. The distribution of FREC among the various sample sources analyzed showed that 14%, 10%, 13.3%, 16.7% and 20% of the isolates came from urine, stool, high vaginal swab, endo cervical swab and wound swab specimens, respectively. More FREC were isolated from female samples 73.3% (22) compared to male samples 26.7% (8) and were more prevalent among the age group 26–35 years (40%). Twenty eight out of the 30 (93.3%) FREC isolates possessed at least one fluoroquinolone resistance gene in the form of qnrA 10 (33.3%) and qnrB 18 (60%), respectively; qnrS was not detected among the FREC isolates analyzed and 13.5% of the isolates possessed both the qnrA and qnrB genes. Phylogenetic analysis showed that these isolates were genetically diverse. Conclusions These findings suggest a possible resistance to fluoroquinolone is of high interest for better management of patients and control of antimicrobial resistance in Nigeria.


2021 ◽  
Vol 24 ◽  
pp. 383-386
Author(s):  
Masaru Usui ◽  
Yohei Nozawa ◽  
Akira Fukuda ◽  
Tomomi Sato ◽  
Michi Yamada ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 228
Author(s):  
Michaela Projahn ◽  
Jana Sachsenroeder ◽  
Guido Correia-Carreira ◽  
Evelyne Becker ◽  
Annett Martin ◽  
...  

Cefotaxime (CTX)-resistant Enterobacteriaceae are still an ongoing challenge in human and veterinary health. High prevalence of these resistant bacteria is detected in broiler chickens and the prevention of their dissemination along the production pyramid is of major concern. The impact of certain on-farm interventions on the external bacterial contamination of broiler chickens, as well as their influence on single processing steps and (cross-) contamination, have not yet been evaluated. Therefore, we investigated breast skin swab samples of broiler chickens before and during slaughter at an experimental slaughter facility. Broiler chickens were previously challenged with CTX-resistant Escherichia coli strains in a seeder-bird model and subjected to none (control group (CG)) or four different on-farm interventions: drinking water supplementation based on organic acids (DW), slow growing breed Rowan × Ranger (RR), reduced stocking density (25 kg/sqm) and competitive exclusion with Enterobacteriales strain IHIT36098(CE). Chickens of RR, 25 kg/sqm, and CE showed significant reductions of the external contamination compared to CG. The evaluation of a visual scoring system indicated that wet and dirty broiler chickens are more likely a vehicle for the dissemination of CTX-resistant and total Enterobacteriaceae into the slaughterhouses and contribute to higher rates of (cross-) contamination during processing.


Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 80 ◽  
Author(s):  
Silpak Biswas ◽  
Mohammed Elbediwi ◽  
Guimin Gu ◽  
Min Yue

Colistin is considered to be a ‘last-resort’ antimicrobial for the treatment of multidrug-resistant Gram-negative bacterial infections. Identification of Enterobacteriaceae, carrying the transferable colistin resistance gene mcr-1, has recently provoked a global health concern. This report presents the first detection of a hydrogen sulfide (H2S)-producing Escherichia coli variant isolated from a human in China, with multidrug resistance (MDR) properties, including colistin resistance by the mcr-1 gene, which could have great implications for the treatment of human infections.


Sign in / Sign up

Export Citation Format

Share Document