In situ diffraction measurements of lattice response due to shock loading, including direct observation of the α–ε phase transition in iron

2006 ◽  
Vol 33 (1-12) ◽  
pp. 343-352 ◽  
Author(s):  
D.H. Kalantar ◽  
G.W. Collins ◽  
J.D. Colvin ◽  
J.H. Eggert ◽  
J. Hawreliak ◽  
...  
2019 ◽  
Vol 179 ◽  
pp. 424-433 ◽  
Author(s):  
Tanguy Lacondemine ◽  
Julien Réthoré ◽  
Éric Maire ◽  
Fabrice Célarié ◽  
Patrick Houizot ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4021
Author(s):  
Andrés Esteban Cerón Cerón Cortés ◽  
Anja Dosen ◽  
Victoria L. Blair ◽  
Michel B. Johnson ◽  
Mary Anne White ◽  
...  

Materials from theA2M3O12 family are known for their extensive chemical versatility while preserving the polyhedral-corner-shared orthorhombic crystal system, as well as for their consequent unusual thermal expansion, varying from negative and near-zero to slightly positive. The rarest are near-zero thermal expansion materials, which are of paramount importance in thermal shock resistance applications. Ceramic materials with chemistry Al2−xInxW3O12 (x = 0.2–1.0) were synthesized using a modified reverse-strike co-precipitation method and prepared into solid specimens using traditional ceramic sintering. The resulting materials were characterized by X-ray powder diffraction (ambient and in situ high temperatures), differential scanning calorimetry and dilatometry to delineate thermal expansion, phase transitions and crystal structures. It was found that the x = 0.2 composition had the lowest thermal expansion, 1.88 × 10−6 K−1, which was still higher than the end member Al2W3O12 for the chemical series. Furthermore, the AlInW3O12 was monoclinic phase at room temperature and transformed to the orthorhombic form at ca. 200 °C, in contrast with previous reports. Interestingly, the x = 0.2, x = 0.4 and x = 0.7 materials did not exhibit the expected orthorhombic-to-monoclinic phase transition as observed for the other compositions, and hence did not follow the expected Vegard-like relationship associated with the electronegativity rule. Overall, compositions within the Al2−xInxW3O12 family should not be considered candidates for high thermal shock applications that would require near-zero thermal expansion properties.


Author(s):  
Rebecca Scatena ◽  
Michał Andrzejewski ◽  
Roger D Johnson ◽  
Piero Macchi

Through in-situ, high-pressure x-ray diffraction experiments we have shown that the homoleptic perovskite-like coordination polymer [(CH3)2NH2]Cu(HCOO)3 undergoes a pressure-induced orbital reordering phase transition above 5.20 GPa. This transition is distinct...


2019 ◽  
Vol 1 (4) ◽  
pp. 1581-1588 ◽  
Author(s):  
S. I. Sadovnikov ◽  
E. Yu. Gerasimov

For the first time, the α-Ag2S (acanthite)–β-Ag2S (argentite) phase transition in a single silver sulfide nanoparticles has been observed in situ using a high-resolution transmission electron microscopy method in real time.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kwangrae Kim ◽  
Hoon Kim ◽  
Jonghwan Kim ◽  
Changil Kwon ◽  
Jun Sung Kim ◽  
...  

AbstractCoulomb attraction between electrons and holes in a narrow-gap semiconductor or a semimetal is predicted to lead to an elusive phase of matter dubbed excitonic insulator. However, direct observation of such electronic instability remains extremely rare. Here, we report the observation of incipient divergence in the static excitonic susceptibility of the candidate material Ta2NiSe5 using Raman spectroscopy. Critical fluctuations of the excitonic order parameter give rise to quasi-elastic scattering of B2g symmetry, whose intensity grows inversely with temperature toward the Weiss temperature of TW ≈ 237 K, which is arrested by a structural phase transition driven by an acoustic phonon of the same symmetry at TC = 325 K. Concurrently, a B2g optical phonon becomes heavily damped to the extent that its trace is almost invisible around TC, which manifests a strong electron-phonon coupling that has obscured the identification of the low-temperature phase as an excitonic insulator for more than a decade. Our results unambiguously reveal the electronic origin of the phase transition.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Qian Li ◽  
Yun Liu ◽  
Andrew Studer ◽  
Zhenrong Li ◽  
Ray Withers ◽  
...  

We characterized the temperature dependent (~25–200°C) electromechanical properties and crystal structure of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3single crystals usingin situelectrical measurement and neutron diffraction techniques. The results show that the poled crystal experiences an addition phase transition around 120°C whereas such a transition is absent in the unpoled crystal. It is also found that the polar order persists above the maximum dielectric permittivity temperature at which the crystal shows a well-defined antiferroelectric behavior. The changes in the electrical properties and underlying crystal structure are discussed in the paper.


Sign in / Sign up

Export Citation Format

Share Document