Metabolomic profiling for biomarker discovery in pancreatic cancer

2012 ◽  
Vol 310 ◽  
pp. 44-51 ◽  
Author(s):  
Prabhjit Kaur ◽  
Kathryn Sheikh ◽  
Alexander Kirilyuk ◽  
Ksenia Kirilyuk ◽  
Rajbir Singh ◽  
...  
Author(s):  
Prabhjit Kaur ◽  
Kathryn Sheikh ◽  
Alexander Kirilyuk ◽  
Ksenia Kirilyuk ◽  
Habtom W. Ressom ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2194
Author(s):  
Kamil Łuczykowski ◽  
Natalia Warmuzińska ◽  
Sylwia Operacz ◽  
Iga Stryjak ◽  
Joanna Bogusiewicz ◽  
...  

Bladder cancer (BC) is a common malignancy of the urinary system and a leading cause of death worldwide. In this work, untargeted metabolomic profiling of biological fluids is presented as a non-invasive tool for bladder cancer biomarker discovery as a first step towards developing superior methods for detection, treatment, and prevention well as to further our current understanding of this disease. In this study, urine samples from 24 healthy volunteers and 24 BC patients were subjected to metabolomic profiling using high throughput solid-phase microextraction (SPME) in thin-film format and reversed-phase high-performance liquid chromatography coupled with a Q Exactive Focus Orbitrap mass spectrometer. The chemometric analysis enabled the selection of metabolites contributing to the observed separation of BC patients from the control group. Relevant differences were demonstrated for phenylalanine metabolism compounds, i.e., benzoic acid, hippuric acid, and 4-hydroxycinnamic acid. Furthermore, compounds involved in the metabolism of histidine, beta-alanine, and glycerophospholipids were also identified. Thin-film SPME can be efficiently used as an alternative approach to other traditional urine sample preparation methods, demonstrating the SPME technique as a simple and efficient tool for urinary metabolomics research. Moreover, this study’s results may support a better understanding of bladder cancer development and progression mechanisms.


2021 ◽  
Vol 11 (2) ◽  
pp. 127 ◽  
Author(s):  
Beste Turanli ◽  
Esra Yildirim ◽  
Gizem Gulfidan ◽  
Kazim Yalcin Arga ◽  
Raghu Sinha

Pancreatic cancer is one of the most fatal malignancies and the seventh leading cause of cancer-related deaths related to late diagnosis, poor survival rates, and high incidence of metastasis. Unfortunately, pancreatic cancer is predicted to become the third leading cause of cancer deaths in the future. Therefore, diagnosis at the early stages of pancreatic cancer for initial diagnosis or postoperative recurrence is a great challenge, as well as predicting prognosis precisely in the context of biomarker discovery. From the personalized medicine perspective, the lack of molecular biomarkers for patient selection confines tailored therapy options, including selecting drugs and their doses or even diet. Currently, there is no standardized pancreatic cancer screening strategy using molecular biomarkers, but CA19-9 is the most well known marker for the detection of pancreatic cancer. In contrast, recent innovations in high-throughput techniques have enabled the discovery of specific biomarkers of cancers using genomics, transcriptomics, proteomics, metabolomics, glycomics, and metagenomics. Panels combining CA19-9 with other novel biomarkers from different “omics” levels might represent an ideal strategy for the early detection of pancreatic cancer. The systems biology approach may shed a light on biomarker identification of pancreatic cancer by integrating multi-omics approaches. In this review, we provide background information on the current state of pancreatic cancer biomarkers from multi-omics stages. Furthermore, we conclude this review on how multi-omics data may reveal new biomarkers to be used for personalized medicine in the future.


Pancreatology ◽  
2020 ◽  
Vol 20 ◽  
pp. S146-S147
Author(s):  
I. Levink ◽  
K. Nesteruk ◽  
D. Visser ◽  
C. Fernandes ◽  
M. Jansen ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 277
Author(s):  
Jungwhoi Lee ◽  
Jungsul Lee ◽  
Woogwang Sim ◽  
Jae-Hoon Kim

Even though the tumour suppressive role of PTEN is well-known, its prognostic implications are ambiguous. The objective of this study was to further explore the function of PTEN expression in human pancreatic cancer. The expression of PTEN has been dominant in various human cancers including pancreatic cancer when compared with their matched normal tissues. The pancreatic cancer cells have been divided into PTEN blockade-susceptible and PTEN blockade-impassible groups dependent on targeting PTEN by altering intracellular signaling. The expression of PTEN has led to varying clinical outcomes of pancreatic cancer based on GEO Series (GSE) data analysis and Liptak’s z analysis. Differential dependency to PTEN blockade has been ascertained based on the expression of polo-like kinase1 PLK1 in pancreatic cancer cells. The prognostic value of PTEN also depends on PLK1 expression in pancreatic cancer. Collectively, the present study provides a rationale for targeting PTEN as a promising therapeutic strategy dependent on PLK1 expressions using a companion biomarker discovery platform.


Gut ◽  
2015 ◽  
Vol 64 (Suppl 1) ◽  
pp. A300.1-A300
Author(s):  
NP Ross ◽  
E Correa ◽  
N Rattray ◽  
D Hildebrand ◽  
Y Xu ◽  
...  

2017 ◽  
Vol 225 (4) ◽  
pp. S133
Author(s):  
Damiano D. Caputo ◽  
Chiara Cascone ◽  
Daniela Pozzi ◽  
Luca Digiacomo ◽  
Sara Palchetti ◽  
...  

2020 ◽  
Vol 506 ◽  
pp. 214-221 ◽  
Author(s):  
Yueting Xiong ◽  
Chao Shi ◽  
Fan Zhong ◽  
Xiaohui Liu ◽  
Pengyuan Yang

Author(s):  
Andrew L. Coveler ◽  
Joseph M. Herman ◽  
Diane M. Simeone ◽  
E. Gabriela Chiorean

Pancreatic cancer is an aggressive cancer that continues to have single-digit 5-year mortality rates despite advancements in the field. Surgery remains the only curative treatment; however, most patients present with late-stage disease deemed unresectable, either due to extensive local vascular involvement or the presence of distant metastasis. Resection guidelines that include a borderline resectable group, as well as advancements in neoadjuvant chemotherapy and radiation that improve resectability of locally advanced disease, may improve outcomes for patients with more invasive disease. Multi-agent chemotherapy regimens fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) and nab-paclitaxel with gemcitabine improved response rates and survival in metastatic pancreatic cancer and are now being used in earlier stages for patients with localized potentially resectable and unresectable disease, with goals of downstaging tumors to allow margin-negative resection and reducing systemic recurrence. Chemoradiotherapy, although still controversial for both resectable and unresectable pancreatic cancer, is being used in the context of contemporary chemotherapy backbone regimens, and novel radiation techniques such as stereotactic body frame radiation therapy (SBRT) are studied on the premise of maintaining or improving efficacy and reducing treatment duration. Patient selection for optimal treatment designation is currently provided by multidisciplinary tumor boards, but biomarker discovery, in blood, tumors, or through novel imaging, is an area of intense research. Results to date suggest that some patients with unresectable disease at the outset have survival rates as good as those with initially resectable disease if able to undergo surgical resection. Long-term follow-up and improved clinical trials options are needed to determine optimal treatment modalities for patients with localized pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document