Modeling of vibrational impact motion of mobile–based body

2007 ◽  
Vol 42 (9) ◽  
pp. 1092-1101 ◽  
Author(s):  
Bronius Baksys ◽  
Nomeda Puodziuniene
Author(s):  
František Peterka

Abstract The double impact oscillator represents two symmetrically arranged single impact oscillators. It is the model of a forming machine, which does not spread the impact impulses into its neighbourhood. The anti-phase impact motion of this system has the identical dynamics as the single system. The in-phase motion and the influence of asymmetries of the system parameters are studied using numerical simulations. Theoretical and simulation results are verified experimentally and the real value of the restitution coefficient is determined by this method.


2020 ◽  
pp. 22-31
Author(s):  
Anton Kurakin ◽  

Systems operation which include rotating elements in certain cases is associated with occurrence of contact between the rotating parts (rotor) and the stationary parts (stator). There were cases then rotor-stator interaction led to damage or to complete unit destruction. For this reason, rotor-stator interaction is one of the main problem of rotor systems exploitation. The main aim of the work is to gather detail data about effect of friction on vibrational characteristics of rotor system during rotor-stator interaction. In this article the experimental investigation method and experimental investigation of dynamic behavior of rotor during rotor-stator interaction is presented. The analysis of experimental data obtained during interaction between steel rotor and stator made of aluminum, bronze and PTFE is presented. All results with rotor-stator contact and without were compared by using Campbell diagrams, orbits and frequency responses. Analysis of experimental data shows that friction has strong effect on vibrational characteristics of rotor system during rotor-stator interaction. According to friction ratio three kinds of vibrational characteristics of rotor system are distinguished: forward slipping if friction coefficient is small, backward rolling if friction coefficient is big, vibratory impact motion if friction coefficient has intermediate value. Created experimental method and gathered data about rotor dynamics during rotor-stator contact can be used for verification and tuning of mathematical models.


2020 ◽  
pp. 107754632094544
Author(s):  
Surya Samukham ◽  
S. N. Khaderi ◽  
C. P. Vyasarayani

This work deals with the modeling of nonsmooth vibro-impact motion of a continuous structure against a rigid distributed obstacle. Galerkin’s approach is used to approximate the solutions of the governing partial differential equations of the structure, which results in a system of ordinary differential equations. When these ordinary differential equations are subjected to unilateral constraints and velocity jump conditions, one must use an event detection algorithm to calculate the time of impact accurately. Event detection in the presence of multiple simultaneous impacts is a computationally demanding task. Ivanov (Ivanov A 1993 “Analytical methods in the theory of vibro-impact systems”. Journal of Applied Mathematics and Mechanics 57(2): pp. 221–236.) proposed a nonsmooth transformation for a vibro-impacting multi-degree-of-freedom system subjected to a single unilateral constraint. This transformation eliminates the unilateral constraints from the problem and, therefore, no event detection is required during numerical integration. This nonsmooth transformation leads to sign function nonlinearities in the equations of motion. However, they can be easily accounted for during numerical integration. Ivanov used his transformation to make analytical calculations for the stability and bifurcations of vibro-impacting motions; however, he did not explore its application for simulating distributed collisions in spatially continuous structures. We adopt Ivanov’s transformation to deal with multiple unilateral constraints in spatially continuous structures. Also, imposing the velocity jump conditions exactly in the modal coordinates is nontrivial and challenging. Therefore, in this work, we use a modal-physical transformation to convert the system from modal to physical coordinates on a spatially discretized grid. We then apply Ivanov’s transformation on the physical system to simulate the vibro-impact motion of the structure. The developed method is demonstrated by modeling the distributed collision of a nonlinear string against a rigid distributed surface. For validation, we compare our results with the well-known penalty approach.


2020 ◽  
pp. 1-1
Author(s):  
Hung-Ping Liu ◽  
Yu-Min Chuang ◽  
Chih-Hao Liu ◽  
Phillip C. Yang ◽  
Chiou-Shann Fuh

2000 ◽  
Vol 68 (4) ◽  
pp. 670-674 ◽  
Author(s):  
G. L. Wen and ◽  
J. H. Xie

A nontypical route to chaos of a two-degree-of-freedom vibro-impact system is investigated. That is, the period-doubling bifurcations, and then the system turns out to the stable quasi-periodic response while the period 4-4 impact motion fails to be stable. Finally, the system converts into chaos through phrase locking of the corresponding four Hopf circles or through a finite number of times of torus-doubling.


2002 ◽  
Author(s):  
Ke Yu ◽  
Albert C. J. Luo

The human-body in a vehicle traveling on the rough terrain is modeled through the lumped mass approach and its periodic impact motions and stability are investigated through a linear model of vehicle and passenger systems. The linear model assumes the motion response of vehicle is very small compared to passenger’s rotational motion since the vehicle chassis has a very large mass and moment of inertia. The period-1 impact motion for two impacts respectively on two walls for a specific number of periods is predicted analytically and numerically. The stability and bifurcation of such a period-1 impact motion are developed analytically. The phase planes of the periodic impact motions are illustrated for a better understanding of the human-body impacting motion in the vehicle.


1998 ◽  
Vol 120 (1) ◽  
pp. 142-144 ◽  
Author(s):  
Alan A. Barhorst

In recent work the author presented a systematic formulation of hybrid parameter multiple body mechanical systems (HPMBS) undergoing contact/impact motion. The method rigorously models all motion regimes of hybrid multiple body systems (i.e., free motion, contact/impact motion, and constrained motion), utilizing minimal sets of hybrid differential equations; Lagrange multipliers are not required. The contact/impact regime was modeled via the idea of instantaneously applied nonholonomic constraints. The technique previously presented did not include the possibility of continuum assumptions along the lines of Timoshenko beams, higher order plate theories, or rational theories considering intrinsic spin-inertia. In this technical brief, the above-mentioned method is extended to include the higher-order continuum assumptions which eliminates the continuum shortfalls from the previous work. The main contributions of this work include: 1) the previous work is rigorously extended, and 2) the fact that coefficients of restitution are not required for modeling the momentum exchange between motion regimes of HPMBS. The field and boundary equations provide the needed extra equations that are used to supply post-collision pointwise relationships for the generalized velocities and velocity fields.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Fangang Meng ◽  
Shijing Wu ◽  
Fan Zhang ◽  
Liang Liang

Transmission mechanism is one of the most important parts of the Ultra-High Voltage (UHV) circuit breaker. It has specific characteristics such as fast response, high speed, and heavy load in the processes of open and close actions. This paper studies the effects of multiple clearances on the working characteristics of transmission mechanism system, especially the motion of its journal center path during operation. It builds a nonlinear kinetic model of transmission mechanism considering the system energy losses due to the impact and friction between the journal and bearing inside clearance joints. Also, an experimental platform is built to measure the displacement and velocity of the moving contact. The results show that the existence of 15 clearance joints in our mechanism system can cause hysteresis effects on the velocity and acceleration of the moving contact, as well as its acceleration fluctuation. Meanwhile, the increase of friction coefficient will stabilize the dynamic characteristic. In addition, both the experimental and simulation results indicate that the motion of the journal center, which is unevenly distributed along the circle, is characterized by three phases: free flight motion, contact motion, and impact motion.


Author(s):  
Duohuan Wu ◽  
Jing Wang ◽  
Peiran Yang ◽  
Ton Lubrecht

In this study, the effect of oil starvation on isothermal elastohydrodynamic lubrication of an impact motion is explored with the aid of numerical techniques. During the impact process, on comparison with the fully lubricated results, the pressure and film thickness are much lower and the entrapped film shape does not happen. The rebound is delayed by the oil starvation assumption. During the rebound process, a periphery entrapment is seen in the starved film thickness distribution. Under the starved condition, the maximum pressure gradient is higher. The central film thickness and minimum film thickness exhibit different variations compared with the results by fully flooded assumption.


Sign in / Sign up

Export Citation Format

Share Document