Novel dry powder inhaler formulation of glucagon with addition of citric acid for enhanced pulmonary delivery

2009 ◽  
Vol 382 (1-2) ◽  
pp. 144-150 ◽  
Author(s):  
Satomi Onoue ◽  
Kiyoshi Yamamoto ◽  
Yohei Kawabata ◽  
Mariko Hirose ◽  
Takahiro Mizumoto ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261720
Author(s):  
Mohammad Zaidur Rahman Sabuj ◽  
Tim R. Dargaville ◽  
Lisa Nissen ◽  
Nazrul Islam

Lower respiratory tract infections (LRTIs) are one of the fatal diseases of the lungs that have severe impacts on public health and the global economy. The currently available antibiotics administered orally for the treatment of LRTIs need high doses with frequent administration and cause dose-related adverse effects. To overcome this problem, we investigated the development of ciprofloxacin (CIP) loaded poly(2-ethyl-2-oxazoline) (PEtOx) nanoparticles (NPs) for potential pulmonary delivery from dry powder inhaler (DPI) formulations against LRTIs. NPs were prepared using a straightforward co-assembly reaction carried out by the intermolecular hydrogen bonding among PEtOx, tannic acid (TA), and CIP. The prepared NPs were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction analysis (PXRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The CIP was determined by validated HPLC and UV spectrophotometry methods. The CIP loading into the PEtOx was between 21–67% and increased loading was observed with the increasing concentration of CIP. The NP sizes of PEtOx with or without drug loading were between 196–350 nm and increased with increasing drug loading. The in vitro CIP release showed the maximum cumulative release of about 78% in 168 h with a burst release of 50% in the first 12 h. The kinetics of CIP release from NPs followed non-Fickian or anomalous transport thus suggesting the drug release was regulated by both diffusion and polymer degradation. The in vitro aerosolization study carried out using a Twin Stage Impinger (TSI) at 60 L/min air flow showed the fine particle fraction (FPF) between 34.4% and 40.8%. The FPF was increased with increased drug loading. The outcome of this study revealed the potential of the polymer PEtOx as a carrier for developing CIP-loaded PEtOx NPs as DPI formulation for pulmonary delivery against LRTIs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249683
Author(s):  
Md Abdur Rashid ◽  
Saiqa Muneer ◽  
Tony Wang ◽  
Yahya Alhamhoom ◽  
Llew Rintoul ◽  
...  

This study aims at developing and characterizing the puerarin dry powder inhaler (DPI) formulations for pulmonary delivery. The inhalable particles size (<2 μm) was accomplished by micronization and its morphology was examined by scanning electron microscopy (SEM). The puerarin-excipient interaction in powder mixtures was analyzed by using Fourier transform infrared spectroscopy (FTIR), Raman confocal microscopy, X-Ray powder Diffraction (XRD), and differential scanning calorimetry (DSC) methods. Using a Twin stage impinger (TSI), the in-vitro aerosolization of the powder formulations was carried out at a flow rate of 60 L/min and the drug was quantified by employing a validated HPLC method. No significant interactions between the drug and the excipients were observed in the powder formulations. The fine particle fraction (FPF) of the drug alone was 4.2% which has increased five to six-fold for the formulations with aerosolization enhancers. Formulation containing lactose as large carriers produced 32.7% FPF, which further increased with the addition of dispersibility enhancers, leucine and magnesium stearate (40.8% and 41.2%, respectively). The Raman and FTIR techniques are very useful tool for understanding structural integrity and stability of the puerarin in the powder formulations. The puerarin was found to be compatible with the excipients used and the developed DPI formulation may be considered as an efficient formulation for pulmonary delivery for the management of various diseases at a very low dose.


2019 ◽  
Vol 9 (2) ◽  
pp. 255-261 ◽  
Author(s):  
Farideh Shiehzadeh ◽  
Mohsen Tafaghodi ◽  
Majid Laal-Dehghani ◽  
Faezeh Mashhoori ◽  
Bibi Sedigheh Fazly Bazzaz ◽  
...  

Purpose: Direct delivery of aminoglycosides to the lungs was under extensive evaluations during the last decades. Because of large particle size, low density and porous structure, large porous particles (LPPs) are versatile carriers for this purpose. In this study, poly (lactic-co-glycolic acid) (PLGA) LPPs encapsulating gentamicin sulfate were prepared and in vitro characteristics of their freeze-dried powder as a dry powder inhaler (DPI) were evaluated. Methods: To prepare PLGA LPPs, a double emulsification-solvent evaporation method was optimized and gentamicin sulfate was post-loaded in the LPPs. In vitro characteristics including morphological features, thermal behavior, aerodynamic profile and cumulative drug release were evaluated by the scanning electron microscope (SEM), differential scanning calorimetry (DSC), next-generation cascade impactor (NGI) and Franz diffusion cell respectively. Results: The obtained results revealed that the preparation method was capable to produce spherical large homogenous highly porous particles. 94% of gentamicin sulfate released from LPPs up to 30 minutes. Mass median aerodynamic diameter (MMAD) and fine particle fraction (FPF) were 4.9 µm and 39% respectively. Conclusion: In this study, dry powder formulation composed of PLGA LPPs encapsulating gentamicin sulfate showed a promising in vitro behavior as a pulmonary delivery carrier. Improvements on the aerodynamic behavior and in vivo evaluations recommended for further developments.


Author(s):  
Hitendra S Mahajan ◽  
Sanket B Dusunge ◽  
Sadanand A Gundare

Pulmonary delivery of anti-tubercular drugs can be an effective treatment for tuberculosis. The main objective of the present work was to prepare rifabutin loaded xyloglucan microspheres as dry powder inhaler for pulmonary delivery. Xyloglucan is natural polysaccharide with mucoadhesive property and temperature responsive gelling ability allows its application in microspheres development. Xyloglucan microspheres were prepared by using single step spray drying process using lactose. All microsphere formulations were evaluated for various physical properties such as density and flow. On the basis of results of evaluation parameters such as entrapment efficiency, mucoadhesion, swelling and in vitro drug release, microspheres with 2% xyloglucan and 1% lactose monohydrate were found to be most favorable. They possessed morphology and particle size distribution suitable for pulmonary administration. XRD studies reveal amorphous nature of microspheres. In vitro DPI performance demonstrates suitability of xyloglucan based microspheres for pulmonary delivery. In conclusion, it is suggested that this natural polymer based microspheres containing rifabutin DPI formulation could be used as a significant enhanced treatment for TB. 


2018 ◽  
Vol 13 (1) ◽  
pp. 91-100 ◽  
Author(s):  
S. Chennakesavulu ◽  
A. Mishra ◽  
A. Sudheer ◽  
C. Sowmya ◽  
C. Suryaprakash Reddy ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 207 ◽  
Author(s):  
Md Abdur Rashid ◽  
Amged Awad Elgied ◽  
Yahya Alhamhoom ◽  
Enoch Chan ◽  
Llew Rintoul ◽  
...  

Purpose: This study describes the development and characterization of glucagon dry powder inhaler (DPI) formulation for pulmonary delivery. Lactose monohydrate, as a carrier, and L-leucine and magnesium stearate (MgSt) were used as dispersibility enhancers for this formulation. Methods: Using Fourier-transform infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), and Raman confocal microscopy, the interactions between glucagon and all excipients were characterized. The fine particle fractions (FPFs) of glucagon in different formulations were determined by a twin stage impinger (TSI) using a 2.5% glucagon mixture, and the glucagon concentration was measured by a validated LC-MS/MS method. Results: The FPF of the glucagon was 6.4%, which increased six-fold from the formulations with excipients. The highest FPF (36%) was observed for the formulation containing MgSt and large carrier lactose. The FTIR, Raman, and DSC data showed remarkable physical interactions of glucagon with leucine and a minor interaction with lactose; however, there were no interactions with MgSt alone or mixed with lactose. Conclusion: Due to the interaction between L-leucine and glucagon, leucine was not a suitable excipient for glucagon formulation. In contrast, the use of lactose and MgSt could be considered to prepare an efficient DPI formulation for the pulmonary delivery of glucagon.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1161
Author(s):  
Shen Nam Cheng ◽  
Zhi Guang Tan ◽  
Manisha Pandey ◽  
Teerapol Srichana ◽  
Mallikarjuna Rao Pichika ◽  
...  

Pulmonary aspergillosis (PA), a pulmonary fungal infection caused by Aspergillus spp., is a concern for immunocompromised populations. Despite substantial research efforts, conventional treatments of PA using antifungal agents are associated with limitations such as excessive systemic exposure, serious side effects and limited availability of the therapeutics in the lungs for an adequate duration. To overcome the limitations associated with the conventional regimens, pulmonary delivery of antifungal agents has become a focal point of research because of the superiority of local and targeted drug delivery. Dry powder inhalers and nebulized formulations of antifungal agents have been developed and evaluated for their capability to effectively deliver antifungal agents to the lungs. Moreover, progress in nanotechnology and the utilization of nanocarriers in the development of pulmonary delivery formulations has allowed further augmentation of treatment capability and efficiency. Thus, the following review provides an insight into the advantages and therapeutic potential of the utilization of nanocarriers in pulmonary delivery of antifungal agents for the treatment of PA. In addition, discussions on formulation aspects and safety concerns together with the clinical and regulatory aspects of the formulations are presented, which suggest the possibility and desirability of utilization of nanocarriers in the treatment of PA.


Sign in / Sign up

Export Citation Format

Share Document