Stability of fluorescent labels in PLGA polymeric nanoparticles: Quantum dots versus organic dyes

2015 ◽  
Vol 494 (1) ◽  
pp. 471-478 ◽  
Author(s):  
Mona M.A. Abdel-Mottaleb ◽  
Arnaud Beduneau ◽  
Yann Pellequer ◽  
Alf Lamprecht
2008 ◽  
Vol 5 (9) ◽  
pp. 763-775 ◽  
Author(s):  
Ute Resch-Genger ◽  
Markus Grabolle ◽  
Sara Cavaliere-Jaricot ◽  
Roland Nitschke ◽  
Thomas Nann

2003 ◽  
Vol 773 ◽  
Author(s):  
Xiaohu Gao ◽  
Shuming Nie ◽  
Wallace H. Coulter

AbstractLuminescent quantum dots (QDs) are emerging as a new class of biological labels with unique properties and applications that are not available from traditional organic dyes and fluorescent proteins. Here we report new developments in using semiconductor quantum dots for quantitative imaging and spectroscopy of single cancer cells. We show that both live and fixed cells can be labeled with multicolor QDs, and that single cells can be analyzed by fluorescence imaging and wavelength-resolved spectroscopy. These results raise new possibilities in cancer imaging, molecular profiling, and disease staging.


2020 ◽  
Vol 16 (6) ◽  
pp. 744-752
Author(s):  
Kuan Luo ◽  
Xinyu Jiang

Background: Diabetes Mellitus (DM) is a major public metabolic disease that influences 366 million people in the world in 2011, and this number is predicted to rise to 552 million in 2030. DM is clinically diagnosed by a fasting blood glucose that is equal or greater than 7 mM. Therefore, the development of effective glucose biosensor has attracted extensive attention worldwide. Fluorescence- based strategies have sparked tremendous interest due to their rapid response, facile operation, and excellent sensitivity. Many fluorescent compounds have been employed for precise analysis of glucose, including quantum dots, noble metal nanoclusters, up-converting nanoparticles, organic dyes, and composite fluorescent microspheres. Silicon dot as promising quantum dots materials have received extensive attention, owing to their distinct advantages such as biocompatibility, low toxicity and high photostability. Methods: MnO2 nanosheets on the Si nanoparticles (NPs) surface serve as a quencher. Si NPs fluorescence can make a recovery by the addition of H2O2, which can reduce MnO2 to Mn2+, and the glucose can thus be monitored based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2. Therefore, the glucose concentration can be derived by recording the fluorescence recovery spectra of the Si NPs. Results: This probe enabled selective detection of glucose with a linear range of 1-100 μg/mL and a limit of detection of 0.98 μg/mL. Compared with the commercial glucometer, this method showed favorable results and convincing reliability. Conclusion: We have developed a novel method based on MnO2 -nanosheet-modified Si NPs for rapid monitoring of blood glucose levels. By combining the highly sensitive H2O2/MnO2 reaction with the excellent photostability of Si NPs, a highly sensitive, selective, and cost-efficient sensing approach for glucose detection has been designed and applied to monitor glucose levels in human serum with satisfactory results.


Author(s):  
Subham Jain N ◽  
Preeti S ◽  
Amit B Patil

Background: The nanotechnology which has vast growth in the research field and the outcome product of nanotechnology is nanoparticles. Quantum dots with a size range of 2-10nm represents a new form in nanotechnology materials. It has showed widespread attention in recent years in the field of science and its application in drug delivery. Quantum dots are semiconductor nanocrystals which possess interesting properties and characteristics such as unique optical properties, quantum confinement effect and emit fluorescence on excitation with a light source which makes them a potential candidate for nano-probes and for carriers for biological application. Objective: The objective of the article is to explain the role and application of Quantum dots in drug delivery and its future application in pharmaceutical science and research. This review focuses on drug delivery through Quantum dots and Quantum dots helping nanocarriers for drug delivery. The development of QD nano-carriers for drugs has become a hotspot in the fields of nano-drug research. The Quantum Dot labelled nano-carrier can able to deliver the drugs with fewer side effects and it can able to trace the drug location in the body. Results: The Fluorescent emission of Quantum dots is better than other organic dyes which leads to better drug delivery for cancer or acting as a tag for other drug carriers. Conclusion: Because of emission property of Quantum Dots, it can be said used with other drug carriers and later it can be traced with the help of Quantum Dots. Quantum dots can be said as smart Drug delivery.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3313 ◽  
Author(s):  
Łukasz Janus ◽  
Julia Radwan-Pragłowska ◽  
Marek Piątkowski ◽  
Dariusz Bogdał

Recently, fluorescent probes became one of the most efficient tools for biosensing and bioimaging. Special attention is focused on carbon quantum dots (CQDs), which are characterized by the water solubility and lack of cytotoxicity. Moreover, they exhibit higher photostability comparing to traditional organic dyes. Currently, there is a great need for the novel, luminescent nanomaterials with tunable properties enabling fast and effective analysis of the biological samples. In this article, we propose a new, ecofriendly bottom-up synthesis approach for intelligent, surface-modified nanodots preparation using bioproducts as a raw material. Obtained nanomaterials were characterized over their morphology, chemical structure and switchable luminescence. Their possible use as a nanodevice for medicine was investigated. Finally, the products were confirmed to be non-toxic to fibroblasts and capable of cell imaging.


2018 ◽  
Vol 114 (3) ◽  
pp. 684a
Author(s):  
Nooshin Shatery Nejad ◽  
Candice M. Etson

Author(s):  
Debendra Prasad Panda ◽  
Akash Kumar Singh ◽  
Tapas Kumar Kundu ◽  
Sundaresan Athinarayanan

Rare-earth ion-activated oxide phosphors are beneficial to overcome the problems like photobleaching, reduced lifetime, and the blinking of organic dyes and quantum dots for bioimaging applications. In this work, we...


COSMOS ◽  
2010 ◽  
Vol 06 (02) ◽  
pp. 149-158
Author(s):  
SUHUA WANG ◽  
DEJIAN HUANG

In this review, we systematically analyzed the complicated interrelationship between photoluminescent quantum dots (QDs) and reactive oxygen species of biological importance. QDs, when photoexcited, generate reactive oxygen species (ROS), which are partially blamed for the cytotoxicity of QDs. On the positive side, the ability of generating ROS by QDs are exploited in photodynamic therapy using QDs alone or in combination with QD-surface bound organic sensitizers via resonance energy transfer from QDs to the organic dyes. Lastly, depending on the chemical composition and the functionalization of the QDs, ROS are known to quench or switch-on the QD photoluminescence. The selectivity and sensitivity toward specific ROS can be achieved through judicious chemical modification of QD surface coating layers by taking into account the reactivity difference among different ROS. The flexible QD surface functionalization opens up the unprecedented possibility of designer-made nanoprobes for sensing and quantifying ROS of biological importance.


Sign in / Sign up

Export Citation Format

Share Document