Seed priming with melatonin effects on growth, essential oil compounds and antioxidant activity of basil (Ocimum basilicum L.) under salinity stress

2020 ◽  
Vol 146 ◽  
pp. 112165 ◽  
Author(s):  
Burak Bahcesular ◽  
Emel Diraz Yildirim ◽  
Meral Karaçocuk ◽  
Muhittin Kulak ◽  
Sengul Karaman
Author(s):  
Rosy Islamadina ◽  
Adelin Can ◽  
Abdul Rohman

Turmeric essential oil is known to have antioxidant activity. Various in vitro antioxidantactivity assays has been carried out. Related to this research, it tries to examine the antioxidantpotential of turmeric essential oil and see the composition that is responsible for antioxidant activitycombine with chemometrics. The research method used was a narrative review of 60 articlesobtained from several databases. The review conducted on profiling essential oil compounds thatidentified using GC-MS and evaluation of the antioxidant activity of turmeric essential oil with themost commonly used method including scavenging radical 2,2 diphenyl-1-picrylhydrazyl (DPPH)and 2,2-azinobis (3-ethylbenzothiazoline-6 sulfonic acid (ABTS). Analysis methods used forgrouping various multivariate data subjects and determaining the relationship between thevariables were Principal Component Analysis (PCA) and Cluster Analysis (CA). According to thereview, turmeric essential oils are proven to have potential antioxidant activity and have variationsin chemical contents. PCA was success for grouping subjects with various correlated variables,determining variables wich the most influential and correlation between variables. CA method canbe used to group samples without requiring mutually correlated variables.


Author(s):  
Mehdi Younessi Mehdikhanlou ◽  
Zahra Dibazarnia ◽  
Shahin Oustan ◽  
Vinson Teniyah ◽  
Ramesh Katam ◽  
...  

Black horehound (Ballota nigra L.) is one of the important medicinal plants, which is a rich source of health-promoting essential oils. Salinity stress affects plant development and alters the quality and quantity of plants extracts and their composition. This study was aimed to investigate the effect of salinity on morphological, physiological characteristics, and secondary metabolites of B. nigra under greenhouse, and in vitro culture conditions. The plants were treated with different concentrations of NaCl (25, 50, 75, 100 mM) and fresh and dry weight of leaf and stem were measured as well as morphological characteristics of the plant. Plant growth was reduced with the increased salinity concentrations. The results showed that all growth-related traits and SPAD were decreased both in vivo and in vitro. Additionally, increased salt concentration affected the cell membrane integrity. Total phenolics content of plants growing in the greenhouse, increased by 21% at 50 mM NaCl, but at higher stress levels (100 mM NaCl), the amounts were decreased significantly. Total flavonoids contents followed similar patterns, with a slight difference. In addition, the maximum and minimum total phenolics contents of plants growing under in vitro condition were observed at 50 mM NaCl and control treatments, respectively. Increasing the salt concentration significantly affected the total flavonoids content, and as a result, the highest amount was observed in 50 and 75 mM NaCl treatments. Antioxidant activity was also measured. Among the NaCl treatments, the highest DPPH scavenging activities (IC50) under greenhouse and in vitro conditions were detected at 50 mM and 25 mM concentrations, respectively. In general, based on the results, with increasing the salinity level to 75 mM, the activities of CAT and APX were significantly upregulated in both greenhouse and in vitro culture conditions. A correlation between total phenolics and flavonoids contents as well as antioxidant activity were obtained. With shifting salinity stress, the type and the amount of the identified essential oil compounds changed. Compounds such as styrene, tridecanol, germacrene-D, beta-Ionone, beta-bisabolene, and caryophyllene oxide increased compared to the controlled treatment.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 797
Author(s):  
Sergio Saia ◽  
Giandomenico Corrado ◽  
Paola Vitaglione ◽  
Giuseppe Colla ◽  
Paolo Bonini ◽  
...  

Salinity in water and soil is one of the major environmental factors limiting the productivity of agronomic and horticultural crops. In basil (Ocimum basilicum L., Lamiaceae) and other Ocimum species, information on the plant response to mild salinity levels, often induced by the irrigation or fertigation systems, is scarce. In the present work, we tested the effectiveness of a microbial-based biostimulant containing two strains of arbuscular mycorrhiza fungi (AMF) and Trichoderma koningii in sustaining greenhouse basil yield traits, subjected to two mild salinity stresses (25 mM [low] and 50 mM [high] modulated by augmenting the fertigation osmotic potential with NaCl) compared to a non-stressed control. The impact of salinity stress was further appraised in terms of plant physiology, morphological ontogenesis and composition in polyphenols and volatile organic compounds (VOC). As expected, increasing the salinity of the solution strongly depressed the plant yield, nutrient uptake and concentration, reduced photosynthetic activity and leaf water potential, increased the Na and Cl and induced the accumulation of polyphenols. In addition, it decreased the concentration of Eucalyptol and β-Linalool, two of its main essential oil constituents. Irrespective of the salinity stress level, the multispecies inoculum strongly benefited plant growth, leaf number and area, and the accumulation of Ca, Mg, B, p-coumaric and chicoric acids, while it reduced nitrate and Cl concentrations in the shoots and affected the concentration of some minor VOC constituents. The benefits derived from the inoculum in term of yield and quality harnessed different mechanisms depending on the degree of stress. under low-stress conditions, the inoculum directly stimulated the photosynthetic activity after an increase of the Fe and Mn availability for the plants and induced the accumulation of caffeic and rosmarinic acids. under high stress conditions, the inoculum mostly acted directly on the sequestration of Na and the increase of P availability for the plant, moreover it stimulated the accumulation of polyphenols, especially of ferulic and chicoric acids and quercetin-rutinoside in the shoots. Notably, the inoculum did not affect the VOC composition, thus suggesting that its activity did not interact with the essential oil biosynthesis. These results clearly indicate that beneficial inocula constitute a valuable tool for sustaining yield and improving or sustaining quality under suboptimal water quality conditions imposing low salinity stress on horticultural crops.


2021 ◽  
Vol 161 ◽  
pp. 113235
Author(s):  
Muhittin Kulak ◽  
Jesús V. Jorrín-Novo ◽  
Maria Cristina Romero-Rodriguez ◽  
Emel Diraz Yildirim ◽  
Fatih Gul ◽  
...  

2014 ◽  
Vol 10 ◽  
pp. 2809-2820 ◽  
Author(s):  
Daniel I Hădărugă ◽  
Nicoleta G Hădărugă ◽  
Corina I Costescu ◽  
Ioan David ◽  
Alexandra T Gruia

Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed–uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC–MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.


2016 ◽  
Vol 6 (1) ◽  
pp. 905-913
Author(s):  
Bahram Majd Nassiry ◽  
Neda Mohammadi

    One of the effects of reducing water content on soil is reduction of growth and development of seedlings and variation of field development. Seed priming technique has been known as a challenge to improve germination and seedling emergence under different environmental stresses. The objectives of this research were to evaluate the effects of osmo-priming on germination characteristics and changes of proline, protein and catalase activity of Ocimum basilicum seeds. Results showed that drought stress reduced the germination characteristics and drought stress in -8 bar was the critical stress.  Priming treatments were include KNO3, PEG and NaCl by 0, -4 and -8 bar concentrations. The seeds were primed with those materials for 8 and 16 hours. The highest germination characteristics were obtained from nitrate potassium in -8 bar for 16 hours priming. Therefore the best seed treatment under drought stress during germination was obtained from the osmo-primed with -8 bar nitrate potassium for 16 hours. The drought stress increased proline and catalase activity but reduced total protein. Priming treatment increases proline, total protein and catalase activity under drought and control conditions. It is concluded that priming results in improvement in germination components of Ocimum basilicum in drought stress conditions and increases the resistance to drought stress with improvement of proline, protein and catalase activity in germination phase.


Sign in / Sign up

Export Citation Format

Share Document