Facile synthesis of MoS2 nanosheets-deposited TiO2 nanotubes array electrode for enhanced electrocatalytic hydrogen evolution reaction

Author(s):  
Samira Yousefzadeh ◽  
Nayyer Mardani
2020 ◽  
Vol 31 (20) ◽  
pp. 205403 ◽  
Author(s):  
Mengting Chen ◽  
Xiumei Jian ◽  
Huancheng Wu ◽  
Junying Huang ◽  
Weipeng Liu ◽  
...  

2019 ◽  
Vol 20 (2) ◽  
pp. 148-151
Author(s):  
Nguyen Thi Minh Nguyet ◽  
Mai Thanh Phong ◽  
Vinh-Dat Vuong ◽  
Tran Van Khai ◽  
Le Van Thang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3273
Author(s):  
Kunjie Wang ◽  
Jiahui Zhang ◽  
Yachen Ye ◽  
Hongbin Ma ◽  
Bingxin Liu ◽  
...  

1T-phase molybdenum disulfide is supposed to be one of the non-precious metal-based electrocatalysts for the hydrogen evolution reaction with the highest potential. Herein, 1T-MoS2 nanosheets were anchored on N-doped carbon nanotubes by a simple hydrothermal process with the assistance of urea promotion transition of the 1T phase. Based on the 1T-MoS2 nanosheets anchored on the N-doped carbon nanotubes structures, 1T-MoS2 nanosheets can be said to have highly exposed active sites from edges and the basal plane, and the dopant N in carbon nanotubes can promote electron transfer between N-doped carbon nanotubes and 1T-MoS2 nanosheets. With the synergistic effects of this structure, the excellent 1T-MoS2/ N-doped carbon nanotubes catalyst has a small overpotential of 150 mV at 10 mA cm−2, a relatively low Tafel slope of 63 mV dec−1, and superior stability. This work proposes a new strategy to design high-performance hydrogen evolution reaction catalysts.


2021 ◽  
pp. 158597
Author(s):  
Yongming Zhang ◽  
Jing Zou ◽  
Zemin He ◽  
Yuzhen Zhao ◽  
Xiaoxi Kang ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1040 ◽  
Author(s):  
Getachew Solomon ◽  
Raffaello Mazzaro ◽  
Vittorio Morandi ◽  
Isabella Concina ◽  
Alberto Vomiero

Molybdenum sulfide (MoS2) has emerged as a promising catalyst for hydrogen evolution applications. The synthesis method mainly employed is a conventional hydrothermal method. This method requires a longer time compared to other methods such as microwave synthesis methods. There is a lack of comparison of the two synthesis methods in terms of crystal morphology and its electrochemical activities. In this work, MoS2 nanosheets are synthesized using both hydrothermal (HT-MoS2) and advanced microwave methods (MW-MoS2), their crystal morphology, and catalytical efficiency towards hydrogen evolution reaction (HER) were compared. MoS2 nanosheet is obtained using microwave-assisted synthesis in a very short time (30 min) compared to the 24 h hydrothermal synthesis method. Both methods produce thin and aggregated nanosheets. However, the nanosheets synthesized by the microwave method have a less crumpled structure and smoother edges compared to the hydrothermal method. The as-prepared nanosheets are tested and used as a catalyst for hydrogen evolution results in nearly similar electrocatalytic performance. Experimental results showed that: HT-MoS2 displays a current density of 10 mA/cm2 at overpotential (−280 mV) compared to MW-MoS2 which requires −320 mV to produce a similar current density, suggesting that the HT-MoS2 more active towards hydrogen evolutions reaction.


Sign in / Sign up

Export Citation Format

Share Document