Fine-grained processing and electron backscatter diffraction (EBSD) analysis of cold-rolled Inconel 617

2019 ◽  
Vol 799 ◽  
pp. 302-313 ◽  
Author(s):  
Junting Luo ◽  
Ruihua Chu ◽  
Wenlu Yu ◽  
Yimin Chen ◽  
Chunxiang Zhang
2007 ◽  
Vol 546-549 ◽  
pp. 885-888
Author(s):  
Yu Xuan Du ◽  
Xin Ming Zhang ◽  
Ling Ying Ye ◽  
Zhi Hui Luo

A novel shear-deformation technique, named ‘shear pressing’ (SP), was developed for fabrication of plate-shaped fine grained metallic materials. The principle of SP is that a material is subjected to shear deformation by utilizing pressing with inclined plane dies. A micrometer order grain structure was obtained in an Al-Mg-Li alloy at strain of ε = -2.3 by utilizing this technique. The grain refinement sequences during pressing were examined by electron backscatter diffraction. The enhancement of grain refinement to the Al-Mg-Li alloy was compared with plane strain compression (PSC) at similar strains. The effect of the shear strain on the accelerated grain refining during compressing has been discussed.


2009 ◽  
Vol 15 (S2) ◽  
pp. 24-25
Author(s):  
M Frary ◽  
S Schlegel ◽  
S Hopkins ◽  
E Young ◽  
J Cole ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


2021 ◽  
Author(s):  
Aaron Cavosie ◽  
Luigi Folco

Table S1: Electron backscatter diffraction (EBSD) analysis conditions<br>


2007 ◽  
Vol 558-559 ◽  
pp. 413-418 ◽  
Author(s):  
Wan Qiang Xu ◽  
Michael Ferry ◽  
Julie M. Cairney ◽  
John F. Humphreys

A typical dual-beam platform combines a focused ion beam (FIB) microscope with a field emission gun scanning electron microscope (FEGSEM). Using FIB-FEGSEM, it is possible to sequentially mill away > ~ 50 nm sections of a material by FIB and characterize, at high resolution, the crystallographic features of each new surface by electron backscatter diffraction (EBSD). The successive images can be combined to generate 3D crystallographic maps of the microstructure. A useful technique is described for FIB milling that allows the reliable reconstruction of 3D microstructures using EBSD. This serial sectioning technique was used to investigate the recrystallization behaviour of a particle-containing nickel alloy, which revealed a number of features of the recrystallizing grains that are not clearly evident in 2D EBSD micrographs such as clear evidence of particle stimulated nucleation (PSN) and twin formation and growth during PSN.


2013 ◽  
Vol 753 ◽  
pp. 285-288
Author(s):  
Feng Xiang Lin ◽  
Torben Leffers ◽  
Wolfgang Pantleon ◽  
Dorte Juul Jensen

Recrystallization kinetics in copper cold-rolled to 90% reduction with and without significant widening was investigated by electron backscatter diffraction. It was found that the recrystallization process was slightly retarded and the development of cube recrystallization texture was largely inhibited in the widening sample. Cube grains were observed to have a growth advantage by a factor of 2 in the non-widening sample, while this growth advantage was not observed in the widening sample. The recrystallization kinetics and the development of cube texture in the two samples are discussed.


2014 ◽  
Vol 782 ◽  
pp. 594-597
Author(s):  
Agnieszka Kochmańska ◽  
Paweł Kochmański

Nickel superalloy was coated by aluminide coatings by the slurry method. The slurry as active mixture containing aluminium and silicon powders, an activator and a binder. The coating were obtained by annealed in argon atmosphere. The structure of these coatings is two zonal and depends on time and temperature of producing. The phase composition was determined using following techniques: scanning electron microscopy (SEM) equipped with Xray microanalysis (EDS) combined with electron backscatter diffraction (EBSD) and Xray diffraction (XRD).


2017 ◽  
Vol 885 ◽  
pp. 275-279 ◽  
Author(s):  
Péter János Szabó ◽  
András Csóré

As a novel procedure for determining dislocation density, a software was improved with which data obtained by Scanning Electron Microscope (SEM) measurements can be collected and the value of superficial dislocation density can be calculated. Applying this method we investigated cold rolled lath martensitic steel samples. Besides dislocation density values, microstructure mapped by Electron Backscatter Diffraction (EBSD) will be discussed.


2007 ◽  
Vol 263 ◽  
pp. 207-212 ◽  
Author(s):  
Vĕra Rothová ◽  
Jiří Buršík ◽  
Milan Svoboda ◽  
Jiří Čermák

Grain boundary self-diffusion in both the cast and the cold-rolled Puratronic 4N5 nickel was studied in the temperature range from 600 °C to 1000 °C. The experiments were carried out with the samples pre-annealed at 1100 °C in comparison to the samples pre-annealed at intended individual diffusion temperatures. The relative grain orientation was analyzed on the same samples by means of electron backscatter diffraction (EBSD) and grain boundaries (GBs) were characterized in terms of the coincidence site lattice (CSL) model. Considering the non-linear Arrhenius temperature dependencies obtained for most specimens by using conventional method of profile evaluation in the B-type kinetics and the appearance of two high-diffusivity paths in diffusion profiles measured, a more suitable BB-type and AB-type diffusion models were applied for data evaluation.


Sign in / Sign up

Export Citation Format

Share Document