Pore/skeleton structure and compressive strength of porous Mo3Si-Mo5Si3-Mo5SiB2 intermetallic compounds prepared by spark plasma sintering and homogenization treatment

2021 ◽  
Vol 856 ◽  
pp. 158150
Author(s):  
Yongan Huang ◽  
Zeming Wang ◽  
Laiqi Zhang ◽  
Shizhong Wei
2020 ◽  
Vol 12 (2) ◽  
pp. 122-128
Author(s):  
D.K. Sahoo ◽  
M.S.V.R. Kishor ◽  
D.P. Sahoo ◽  
S. Sarkar ◽  
A. Behera

Background: Industries such as thermal power plants use coal as a source of energy and release the combustion products into the environment. The generation of these wastes is inevitable and thus needed to be reused. In India, coals with high ash content usually between 25 to 45% are used. The refractory bricks that were used earlier in steel industries were mainly based on silica, magnesia, chrome, graphite. In modern days, several other materials were introduced for the manufacturing of refractory bricks such as mullite, chrome-magnesite, zircon, fused cast, and corundum. The materials selection for refractory brick manufacturing depends on various factors such as the type of furnace and working conditions. Objectives: The current work aims to focus on the fly-ash subjected to spark plasma sintering process with a maximum temperature of 1500 °C and pressure 60 MPa for 15 minutes and to characterize to observe the properties with respect to their microstructure. Methods: Fly-ash collected from Rourkela Steel Plant was sintered using spark plasma sintering machine at the Indian Institute of Technology, Kharagpur. The powder placed in a die was subjected to a heating rate of 600-630 K/min, up to a maximum temperature of 1500˚C. The process took 15 minutes to complete. During the process, the pressure applied was ranging between 50 to 60 Mpa. 5-10 Volts DC supply was given to the machine with a pulse frequency of 30-40 KHz. The sintered product was then hammered out of the die and the small pieces of the sintered product were polished for better characterization. The bricks collected from Hindalco Industries were also hammered into pieces and polished for characterization and comparison. Results: The particles of fly-ash as observed in SEM analysis were spherical in shape with few irregularly shaped particles. The sintered fly-ash sample revealed grey and white coloured patches distributed around a black background. These were identified to be the intermetallic compounds that were formed due to the dissociation of compounds present in fly-ash. High- temperature microscopy analysis of the sintered sample revealed the initial deformation temperature (IDT) of the fly-ash brick and the refractory brick which were found to be 1298 °C and 1543 °C, respectively. The maximum hardness value observed for the sintered fly-ash sample was 450 Hv (4.413 GPa) which is due to the formation of nano-grains as given in the microstructure. The reason behind such poor hardness value might be the absence of any binder. For the refractory brick, the maximum hardness observed was 3400 Hv (33.34 GPa). Wear depth for the sintered fly-ash was found to be 451 μm whereas for the refractory brick sample it was 18 μm. Conclusion: The fly-ash powder subjected to spark plasma sintering resulted in the breaking up of cenospheres present in the fly ash due to the formation of intermetallic compounds, such as Cristobalite, syn (SiO2), Aluminium Titanium (Al2Ti), Magnesium Silicon (Mg2Si), Maghemite (Fe2O3), Chromium Titanium (Cr2Ti) and Magnesium Titanium (Mg2Ti), which were responsible for the hardness achieved in the sample. A large difference in the maximum hardness values of sintered fly-ash and refractory brick was observed due to the hard nitride phases present in the refractory brick.


2015 ◽  
Vol 13 ◽  
pp. 83-90 ◽  
Author(s):  
Cristiana Diana Cristea ◽  
Magdalena Lungu ◽  
Alexander M. Balagurov ◽  
Virgil Marinescu ◽  
Otilia Culicov ◽  
...  

The addition of Cu to near equiatomic NiTi shape memory alloys (SMAs) can provide some modifications of their shape memory properties by affecting their transformation behavior. The same effect was obtained in the case of Ni3Ti2 and Ni4Ti3 precipitates presence in the microstructure of NiTi. Also the substitution of Cu to NiTi alloys increases the hardness of the materials. This paper presents the microstructural and mechanical investigations of NiTi and NiTiCu alloys obtained by spark plasma sintering (SPS) process that represents a great potential for researchers as a new process for the fabrication of intermetallic compounds.


2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850022
Author(s):  
MAOYUAN LI ◽  
LIN LU ◽  
ZHEN DAI ◽  
YIQIANG HONG ◽  
WEIWEI CHEN ◽  
...  

Amorphous Al–Cu–Ti metal foams were prepared by spark plasma sintering (SPS) process with the diameter of 10[Formula: see text]mm. The SPS process was conducted at the pressure of 200 and 300[Formula: see text]MPa with the temperature of 653–723[Formula: see text]K, respectively. NaCl was used as the space-holder, forming almost separated pores with the porosity of 65 vol%. The microstructure and mechanical behavior of the amorphous Al–Cu–Ti metal foams were systematically investigated. The results show that the crystallinity increased at elevated temperatures. The effect of pressure and holding time on the crystallization was almost negligible. The intermetallic compounds, i.e. Al–Ti, Al–Cu and Al–Cu–Ti were identified from X-ray diffraction (XRD) patterns. It was found that weak adhesion and brittle intermetallic compounds reduced the mechanical properties, while lower volume fraction and smaller size of NaCl powders improved the mechanical properties.


2019 ◽  
Vol 7 (4) ◽  
pp. 1574-1584 ◽  
Author(s):  
Junmei Fan ◽  
Si Hui ◽  
Trevor P. Bailey ◽  
Alexander Page ◽  
Ctirad Uher ◽  
...  

Graphene aerogels grown on hollow silica spheres through spark plasma sintering lead to ultralow thermal conductivity and high compressive strength.


2007 ◽  
Vol 336-338 ◽  
pp. 1050-1052 ◽  
Author(s):  
Hai Tao Wu ◽  
Yun Long Yue ◽  
Wei Bing Wu ◽  
Hai Yan Yin

The γ-TiAl intermetallic compounds were produced at the temperature ranging from 850°C to 1050°C by the Spark Plasma Sintering (SPS) process. The effects of sintering temperature and holding time on the mechanical properties of γ-TiAl intermetallic compounds were investigated. The γ-TiAl intermetallic compounds sintered at 1050°C for 10 min showed a high relative density more than 98%, and had the best three-point bending strength of 643MPa, fracture toughness of 12 MPa·m1/2 and microhardness of 560MPa. The microstructural observations indicated typical characteristics of intergranular fracture, which meant the poor ductility of γ-TiAl intermetallic compounds.


2012 ◽  
Vol 581-582 ◽  
pp. 1006-1009
Author(s):  
Nian Liu ◽  
Guo Dong Zhang ◽  
Jin Lu Wu ◽  
Fu Ju Zhang ◽  
Jian Qiang Zhang

Ni3Al intermetallic compounds containing Cr was synthesized via Spark Plasma Sintering process. These Ni3Al intermetallic compounds containing Cr have a nearly full density after sintered at 1100 °C for 5 min under the pressure of 40MPa. Microstructure and hardness of these intermetallic compounds was studied through metallograph observation and micro hardness tests. Their formation and strengthening mechanisms were analyzed and discussed in detail. The influence of the chromium content on corrosion resistance of these intermetallic compounds was analyzed by anode polarization curves. Results show that the corrosion resistance of Ni3Al intermetallic compounds is upgraded significantly with increasing chromium content.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1314
Author(s):  
Ikuho Nakahata ◽  
Yusuke Tsutsumi ◽  
Equo Kobayashi

Recent studies indicate that biodegradable magnesium alloys and composites are attracting a great deal of attention in orthopedic applications. In this study, magnesium–hydroxyapatite (Mg–HAP) composites with different compositions and grain size were fabricated by a spark plasma sintering (SPS) method. Their mechanical properties and corrosion behavior in a pseudo-physiological environment were investigated by pH measurements and inductivity coupled plasma (ICP) elemental analysis after an immersion test using Hanks’ solution. The results clearly showed that the addition of HAP improved both the mechanical properties and corrosion resistance. The results also indicated that the finer grain size improved most of the properties that are needed in a material for an orthopedic implant. Furthermore, the authors reveal that there is a strong correlation between the compressive strength and the porosity. In order to achieve the same compressive strength as human bone using these fabrication conditions, it is revealed that the porosity should be lower than 1.9%.


Sign in / Sign up

Export Citation Format

Share Document