scholarly journals Evaluation of using magnetic nanoparticle attached phosphorus species as supplemental phosphorous source in broiler diet

Author(s):  
Jinquan Wang ◽  
Marc Zanghi ◽  
Jie Xu ◽  
Woo K. Kim
RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20708-20719
Author(s):  
Magdalena Kulpa-Greszta ◽  
Anna Tomaszewska ◽  
Andrzej Dziedzic ◽  
Robert Pązik

Rapid hot-injection can be used for precise control of magnetic particle shape.


2021 ◽  
Author(s):  
Emily Sheridan ◽  
Silvia Vercellino ◽  
Lorenzo Cursi ◽  
Laurent Adumeau ◽  
James A. Behan ◽  
...  

We describe how magnetic nanoparticles can be used to study intracellular nanoparticle trafficking, and how magnetic extraction may be integrated with downstream analyses to investigate nanoscale decision-making events.


2021 ◽  
Vol 22 (2) ◽  
pp. 654
Author(s):  
Ka Young Kim ◽  
Keun-A Chang

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Several treatments for PD have focused on the management of physical symptoms using dopaminergic agents. However, these treatments induce various adverse effects, including hallucinations and cognitive impairment, owing to non-targeted brain delivery, while alleviating motor symptoms. Furthermore, these therapies are not considered ultimate cures owing to limited brain self-repair and regeneration abilities. In the present study, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASCs) using magnetic nanoparticles in a 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We used the Maestro imaging system and magnetic resonance imaging (MRI) for in vivo tracking after transplantation of magnetic nanoparticle-loaded hASCs to the PD mouse model. The Maestro imaging system revealed strong hASCs signals in the brains of PD model mice. In particular, MRI revealed hASCs distribution in the substantia nigra of hASCs-injected PD mice. Behavioral evaluations, including apomorphine-induced rotation and rotarod performance, were significantly recovered in hASCs-injected 6-OHDA induced PD mice when compared with saline-treated counterparts. Herein, we investigated whether hASCs transplantation using magnetic nanoparticles recovered motor functions through targeted brain distribution in a 6-OHDA induced PD mice. These results indicate that magnetic nanoparticle-based hASCs transplantation could be a potential therapeutic strategy in PD.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Siwen Wu ◽  
Xiyu Liu ◽  
Jian He ◽  
Huiling Wang ◽  
Yiqun Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document