scholarly journals Safe and efficient 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical study

Author(s):  
Xin Li ◽  
Lingdan Kong ◽  
Wei Hu ◽  
Changchang Zhang ◽  
Andrij Pich ◽  
...  
2021 ◽  
Author(s):  
Xin Li ◽  
Lingdan Kong ◽  
Wei Hu ◽  
Changchang Zhang ◽  
Xiangyang Shi ◽  
...  

Abstract Background The striking imbalance between the ever-increasing amount of nanomedicines and low clinical translation of products has become the focus of intense debate. For clinical translation, the critical issue is to select the appropriate agents and combination regimen for targeted diseases, not to prepare increasingly complex nanoplatforms. Methods Herein, a safe and efficient platform, α-tocopheryl succinate (α-TOS) married 2D molybdenum disulfide, was devised by a facile method and applied for cooperative imaging-guided photothermal-selective chemotherapy of ovarian carcinoma. Results The photothermal efficiency (65.3%) of the platform under safe near-infrared irradiation is much higher than that of other photothermal materials reported elsewhere. Moreover, the covalently linked α-TOS renders platform with selective chemotherapy for cancer cells. Remarkably, with these excellent properties, the platform can be used to completely eliminate the solid tumor by safe photothermal therapy, and then kill the residual cancer cells by selective chemotherapy to prevent tumor recurrence. More significantly, barely side effects occurred in the whole treatment process. The excellent efficacy and safety benefits in vivo lead to the prominent survival rate of 100% over 91 days. Conclusion Overall, the safe and efficient platform might be a candidate of clinical nanomedicines for multimode theranostics. This study demonstrates an innovative thought in precise nanomedicine regarding the design of next generation of cancer theranostic protocol for potential clinical practice.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (7) ◽  
pp. 35-41
Author(s):  
OUTI A. HYÖKYVIRTA ◽  
TOM E. GUSTAFSSON

This investigation evaluated the applicability of a molybdenum sulfide reference electrode (MSRE) as an internal reference electrode for use in alkaline sulfide solutions over a range of pulp digester liquors at 170°C. The electrode remained stable during the exposure period of two weeks. The experimentally determined half cell potential of the MSRE is E = -0.91 VSHE. The surface of the MSRE was examined by scanning electron microscope (SEM) and electron spectroscopy for chemical analysis (ESCA) to verify the chemical composition of the thin surface film. Based on ESCA studies, the surface film contained molybdenum disulfide and sodium disulfide. During storage of the specimens, sulfide was partly oxidized to sodium sulfite in air. Next to the metallic molybdenum, a mixed molybdenum disulfide and molybdenum hydroxide layer was detected.


Author(s):  
E. K. Rakhmatullin ◽  
O. D. Sklyarov

Preclinical study of the drugs toxicity was analysed it allows predicting the safety of veterinary drugs in laboratory animals. The fundamental normative instruments in the field of preclinical study of drugs for veterinary medicine and animal husbandry are Order of the Ministry of Agriculture of the Russian Federation dated 06.03.2018 N 101 and GOST 33044-2014 Principles of Good Laboratory Practice. An important indicator of the preclinical study of the veterinary drugs is the determination (calculation) of median lethal dose value (lethal dose for half of the animals tested) or concentration (LD50 or LC50). Existing methods for determining this indicator make it possible at the initial study stage to determine the degree and class the drug of toxicity. Studying the symptoms of intoxication in the analysis of pharmacological substances one obtains significant information about the nature of the action of the future drug. The clinical manifestations of intoxication with damage to various organ systems are presented. As criteria for assessing the toxic effects of veterinary drugs it is recommended to determine LD50, cumulation coefficient, latitude index of therapeutic effects, dose level of toxic effects in the experiment which allows predicting the nature and degree of toxic effects of the drug even at the stage of preclinical veterinary drugs study.


Author(s):  
F.A. Medetkhanov ◽  
◽  
V.G. Sofronov ◽  
E.K. Papunidi ◽  
M.I. Gilemkhanov ◽  
...  
Keyword(s):  

2019 ◽  
Vol 19 (1) ◽  
pp. 31-45
Author(s):  
Meena K. Yadav ◽  
Laxmi Tripathi

Background: N-{[3-(4-chlorophenyl)-4-oxo-3, 4-dihydroquinazolin-2-yl] methyl}, 2-[(2- isopropyl-5-methyl) 1-cyclohexylidene] hydrazinecarboxamide QS11 was designed by computational study. It possessed essential pharmacophoric features for anticonvulsant activity and showed good docking with iGluRs (Kainate) glutamate receptor. Methods: QSAR and ADMET screening results suggested that QS11 would possess good potency for anticonvulsant activity. QS11 was synthesised and evaluated for its anticonvulsant activity and neurotoxicity. QS11 showed protection in strychnine, thiosemicarbazide, 4-aminopyridine and scPTZ induced seizure models and MES seizure model. QS11 showed higher ED50, TD50 and PI values as compared to the standard drugs in both MES and scPTZ screen. A high safety profile (HD50/ED50 values) was noted and hypnosis, analgesia, and anaesthesia were only observed at higher doses. No considerable increase or decrease in the concentration of liver enzymes was observed. Optimized QS11 was subjected to preclinical (in-vivo) studies and the pharmacokinetic performance of the sample was investigated. The result revealed that the pharmacokinetic performance of QS11 achieved maximum plasma concentrations (Cmax) of 0.315 ± 0.011 µg/mL at Tmax of 2.0 ± 0.13 h, area under the curve (AUC0-∞) value 4.591 ± 0.163 µg/ml x h, elimination half-life (T1/2) 6.28 ± 0.71 h and elimination rate constant was found 0.110 ± 0.013 h-1. Results and Conclusion: Above evidences indicate that QS11 could serve as a lead for development of new antiepileptic drugs.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1239
Author(s):  
Manuel Ramos ◽  
Félix Galindo-Hernández ◽  
Brenda Torres ◽  
José Manuel Domínguez-Esquivel ◽  
Martin Heilmaier

We report the thermal stability of spherically shaped cobalt-promoted molybdenum disulfide (Co/MoS2) nano-catalysts from in-situ heating under electron irradiation in the scanning transmission electron microscope (STEM) from room temperature to 550 °C ± 50 °C with aid of Fusion® holder (Protochip©, Inc.). The catalytic nanoparticles were synthesized via a hydrothermal method using sodium molybdate (Na2MoO4·2H2O) with thioacetamide (CH3CSNH2) and cobalt chloride (CoCl2) as promoter agent. The results indicate that the layered molybdenum disulfide structure with interplanar distance of ~0.62 nm remains stable even at temperatures of 550 °C, as observed in STEM mode. Subsequently, the samples were subjected to catalytic tests in a Robinson Mahoney Reactor using 30 g of Heavy Crude Oil (AGT-72) from the golden lane (Mexico’s east coast) at 50 atm using (ultrahigh purity) UHP hydrogen under 1000 rpm stirring at 350 °C for 8 h. It was found that there is no damage on the laminar stacking of Co/MoS2 with temperature, with interlayer spacing remaining at 0.62 nm; these sulfided catalytic materials led to aromatics rise of 22.65% and diminution of asphaltenes and resins by 15.87 and 3.53%, respectively.


Sign in / Sign up

Export Citation Format

Share Document