Detection of high frequency gravity waves using high resolution radiosonde observations

2012 ◽  
Vol 77 ◽  
pp. 254-259 ◽  
Author(s):  
P.P. Leena ◽  
M. Venkat Ratnam ◽  
B.V. Krishna Murthy ◽  
S. Vijaya Bhaskara Rao
1978 ◽  
Vol 86 (3) ◽  
pp. 401-413 ◽  
Author(s):  
John H. Chang ◽  
Richard N. Wagner ◽  
Henry C. Yuen

The properties of high frequency capillary waves generated by steep gravity waves on deep water have been measured with a high resolution laser optical slope gauge. The results have been compared with the steady theory of Longuet-Higgins (1963). Good qualitative agreement is obtained. However, the quantitative predictions of the capillary wave slopes cannot be verified by the data because the theory requires knowledge of an idealized quantity - the crest curvature of the gravity wave in the absence of surface tension - which cannot be measured experimentally.


2020 ◽  
Vol 12 (4) ◽  
pp. 676 ◽  
Author(s):  
Yong Yang ◽  
Wei Tu ◽  
Shuying Huang ◽  
Hangyuan Lu

Pansharpening is the process of fusing a low-resolution multispectral (LRMS) image with a high-resolution panchromatic (PAN) image. In the process of pansharpening, the LRMS image is often directly upsampled by a scale of 4, which may result in the loss of high-frequency details in the fused high-resolution multispectral (HRMS) image. To solve this problem, we put forward a novel progressive cascade deep residual network (PCDRN) with two residual subnetworks for pansharpening. The network adjusts the size of an MS image to the size of a PAN image twice and gradually fuses the LRMS image with the PAN image in a coarse-to-fine manner. To prevent an overly-smooth phenomenon and achieve high-quality fusion results, a multitask loss function is defined to train our network. Furthermore, to eliminate checkerboard artifacts in the fusion results, we employ a resize-convolution approach instead of transposed convolution for upsampling LRMS images. Experimental results on the Pléiades and WorldView-3 datasets prove that PCDRN exhibits superior performance compared to other popular pansharpening methods in terms of quantitative and visual assessments.


1990 ◽  
Vol 15 (2) ◽  
pp. A10 ◽  
Author(s):  
David J. Sahn ◽  
Diana Tasker ◽  
Sandra Hagen-Ansert ◽  
Axel Brisken ◽  
Scott Corbett

2016 ◽  
Vol 20 (9) ◽  
pp. 3619-3629 ◽  
Author(s):  
Frans C. van Geer ◽  
Brian Kronvang ◽  
Hans Peter Broers

Abstract. Four sessions on "Monitoring Strategies: temporal trends in groundwater and surface water quality and quantity" at the EGU conferences in 2012, 2013, 2014, and 2015 and a special issue of HESS form the background for this overview of the current state of high-resolution monitoring of nutrients. The overview includes a summary of technologies applied in high-frequency monitoring of nutrients in the special issue. Moreover, we present a new assessment of the objectives behind high-frequency monitoring as classified into three main groups: (i) improved understanding of the underlying hydrological, chemical, and biological processes (PU); (ii) quantification of true nutrient concentrations and loads (Q); and (iii) operational management, including evaluation of the effects of mitigation measures (M). The contributions in the special issue focus on the implementation of high-frequency monitoring within the broader context of policy making and management of water in Europe for support of EU directives such as the Water Framework Directive, the Groundwater Directive, and the Nitrates Directive. The overview presented enabled us to highlight the typical objectives encountered in the application of high-frequency monitoring and to reflect on future developments and research needs in this growing field of expertise.


2018 ◽  
Vol 146 (11) ◽  
pp. 3845-3872 ◽  
Author(s):  
Nicholas A. Gasperoni ◽  
Xuguang Wang ◽  
Keith A. Brewster ◽  
Frederick H. Carr

Abstract The Nationwide Network of Networks (NNoN) concept was introduced by the National Research Council to address the growing need for a national mesoscale observing system and the continued advancement toward accurate high-resolution numerical weather prediction. The research test bed known as the Dallas–Fort Worth (DFW) Urban Demonstration Network was created to experiment with many kinds of mesoscale observations that could be used in a data assimilation system. Many nonconventional observations, including Earth Networks and Citizen Weather Observer Program surface stations, are combined with conventional operational data to form the test bed network. A principal component of the NNoN effort is the quantification of observation impact from several different sources of information. In this study, the GSI-based EnKF system was used together with the WRF-ARW Model to examine impacts of observations assimilated for forecasting convection initiation (CI) in the 3 April 2014 hail storm case. Data denial experiments tested the impact of high-frequency (5 min) assimilation of nonconventional data on the timing and location of CI and subsequent storm evolution. Results showed nonconventional observations were necessary to capture details in the dryline structure causing localized enhanced convergence and leading to CI. Diagnosis of denial-minus-control fields showed the cumulative influence each observing network had on the resulting CI forecast. It was found that most of this impact came from the assimilation of thermodynamic observations in sensitive areas along the dryline gradient. Accurate metadata were found to be crucial toward the future application of nonconventional observations in high-resolution assimilation and forecast systems.


2013 ◽  
Vol 31 (10) ◽  
pp. 1731-1743 ◽  
Author(s):  
C. M. Huang ◽  
S. D. Zhang ◽  
F. Yi ◽  
K. M. Huang ◽  
Y. H. Zhang ◽  
...  

Abstract. Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs) in a time-varying tide. Our simulations show that when a GW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative) accelerations induce frequency increases (decreases) with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal–GW interactions are more complicated than usually taken into account by GW parameterizations in global models.


Sign in / Sign up

Export Citation Format

Share Document