Influences of carbon and nitrogen source addition, water content, and initial pH of grain medium on hispidin production of Phellinus linteus by solid-state fermentation

2020 ◽  
Vol 130 (6) ◽  
pp. 616-621 ◽  
Author(s):  
Chih-Hung Liang ◽  
Chiu-Yeh Wu ◽  
Wai-Jane Ho ◽  
Zeng-Chin Liang
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Faseleh Jahromi ◽  
Juan Boo Liang ◽  
Yin Wan Ho ◽  
Rosfarizan Mohamad ◽  
Yong Meng Goh ◽  
...  

Ability of two strains ofAspergillus terreus(ATCC 74135 and ATCC 20542) for production of lovastatin in solid state fermentation (SSF) using rice straw (RS) and oil palm frond (OPF) was investigated. Results showed that RS is a better substrate for production of lovastatin in SSF. Maximum production of lovastatin has been obtained usingA. terreusATCC 74135 and RS as substrate without additional nitrogen source (157.07 mg/kg dry matter (DM)). Although additional nitrogen source has no benefit effect on enhancing the lovastatin production using RS substrate, it improved the lovastatin production using OPF with maximum production of 70.17 and 63.76 mg/kg DM forA. terreusATCC 20542 andA. terreusATCC 74135, respectively (soybean meal as nitrogen source). Incubation temperature, moisture content, and particle size had shown significant effect on lovastatin production (P<0.01) and inoculums size and pH had no significant effect on lovastatin production (P>0.05). Results also have shown that pH 6, 25°C incubation temperature, 1.4 to 2 mm particle size, 50% initial moisture content, and 8 days fermentation time are the best conditions for lovastatin production in SSF. Maximum production of lovastatin using optimized condition was 175.85 and 260.85 mg/kg DM forA. terreusATCC 20542 and ATCC 74135, respectively, using RS as substrate.


2018 ◽  
Vol 43 (3) ◽  
pp. 240-247 ◽  
Author(s):  
Nurullah Akcan

AbstractObjective:The aim of this work was to study the optimal cultivation conditions for β-galactosidase production byBacillus licheniformisATCC 12759.Materials and methods:The screening of β-galactosidase production fromB. licheniformisATCC 12759 was performed by solid state fermentation method on media rich with rice bran (RB). Different factors were tested for the optimization of β-galactosidase production.Results:Certain fermentation parameters involving incubation time, incubation temperature, inoculum level, moisture content, initial pH, agitation speed, size of fermentation medium and optimum temperature of β-galactosidase activity were studied separately. Maximal amount of β-galactosidase production was obtained when solid-state fermentation (SSF) was carried out using RB, having inoculum level 35%, moisture content of 20%, initial pH 7.5 at 37°C for 48 h.Conclusion:Results indicated that optimal fermentation conditions play a key role in the maximum production of β-galactosidase fromB. licheniformisATCC 12759. This study shows the potential of the studied enzymes to be promoting candidates for the degradation of lactose and production of important bioproducts.


2014 ◽  
Vol 1010-1012 ◽  
pp. 42-47
Author(s):  
Jun Yao He ◽  
Xuan Yi Ye ◽  
Qing Zhi Ling ◽  
Li Hui Dong

The production of laccase by solid-state fermentation (SSF) usingArmillariella tabescenswas studied. Wheat bran was selected to be the most suitable solid substrate. Several operational variables including nitrogen source, moisture content, copper and aromatic inducers were investigated. The results showed that the complex nitrogen sources, NH4NO3coupled with peptone was shown to be the best nitrogen source. 75% of initial moisture content was proved to be appropriate. Copper significantly influenced the laccase production and the yield of laccase was improved by addition of 1.5 mM copper sulphate in the medium. Guaiacol efficiently induced the laccase production and the enzyme yield (24500U/g) was enhanced by 32% compared with he control without any aromatic inducers. Efficient production of laccase fromA. tabescenscan be achieved by solid-state fermentation.


2019 ◽  
Author(s):  
KA Nguyen ◽  
W Penkhrue ◽  
S Lumyong

AbstractPolypores are diverse macrofungi that have been extensively studied for their enzyme production capabilities. Presently, these enzymes are being used for many industrial purposes. However, the high-cost associated with their production is the main barrier to their broader application. This work aimed to study the optimal medium and conditions by using solid state fermentation. Seven polypore strains were used for cellulase activity screening. The fermentation experiments were carried out in 250 mL Erlenmeyer flasks with green tea waste as a substrate. Notably, Microporus sp. KA038 showed the best level of activity of 81.8 IU/gds. Various parameters such as temperature on growth, moisture content, nitrogen source, initial pH value, inoculum size and incubation time were considered to determine the optimal conditions for cellulase production. The optimal medium consisted of green tea leaves as a carbon source, beef extract as an organic nitrogen source, and NH4H2PO4 as an inorganic nitrogen source, while pH 7.0 and an incubation temperature of 30°C for 4 days resulted in a high enzyme yield with Microporus sp. KA038.


2021 ◽  
Author(s):  
Chih-Hung Liang ◽  
Chiu-Yeh Wu ◽  
Chin-Hao Ou ◽  
Zeng-Chin Liang

Abstract This study aimed to screen a highest hispidin production of strain from 12 strains of Phellinus, and to evaluate the effects of liquid spawn conditions and grain medium on this strain’s hispidin production levels after solid-state fermentation. Results showed that the P. linteus 04 led to the highest hispidin production, this strain was then selected to elucidate the optimal liquid spawn conditions and grain medium for hispidin production. Various liquid spawn conditions were evaluated, and the highest hispidin yield, specific productivity of hispidin, and total content of hispidin were found to be optimal at 1 week of liquid spawn age, cultured with potato dextrose borth, and using 10 % inoculum rate, with each condition resulting to 0.350, 0.325, and 0.328 mg/g dry weight of mycelium, 0.352, 0.251, and 0.249 µg/mg week− 1 specific productivity, 57.90, 60.23, and 61.77 mg/kg dry weight of brown rice medium, respectively. These liquid spawn conditions were then used to determine the appropriate grain medium for hispidin production. The highest hispidin yield and total content of hispidin were observed in pearl barley which resulted in 1.107 mg/g dry weight of mycelium and 199.76 mg/kg dry weight of pearl barley, which led to results that were 4.73-fold and 5.35-fold higher than those of control (brown rice medium). Overall, this study shows that P. linteus hispidin production can be enhanced by solid-state fermentation using optimal liquid spawn conditions and the appropriate grain medium.


2020 ◽  
Vol 49 (1) ◽  
pp. 135-140
Author(s):  
Roheena Abdullah ◽  
Maria Hanif ◽  
Afshan Kaleem ◽  
Mehwish Iqtedar ◽  
Kinza Nisar ◽  
...  

The experiment was conducted to isolate and screen fungal strain and optimization of solid-state fermentation conditions for enhanced production of β-glucosidase. Different fungal cultures were isolated and screened for β-glucosidase production. The physicochemical and nutritional parameters were optimized for enhanced production of β-glucosidase from higher producer. Among all the isolates the isolate which exhibited highest β-glucosidase potential was identified and assigned the code as Aspergillus niger MBT-2. The optimum β-glucosidase production was obtained in M5 medium containing wheat bran after 72 hrs of incubation at 40°C, pH 6 and 20 ml of moisture contents. In addition to this 2% fructose and 2% yeast extract proved to be best carbon and nitrogen sources, respectively and gave maximal enzyme productivity. The exploitation of agricultural by products as a substrate reduced the production cost of enzyme and makes the process economical. The Aspergillus niger MBT-2 has promising potential of bioconversion of low-cost material into valuable product like β-glucosidase.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Oliyad Jeilu Oumer ◽  
Dawit Abate

The request for enzymes in the global market is expected to rise at a fast pace in recent years. With this regard, there has been a great increase in industrial applications of pectinase owing to their significant biotechnological uses. This study was undertaken with main objectives of meeting the growing industrial demands of pectinase, by improving the yield without increasing the cost of production. In addition, this research highlights the underestimated potential of agroresidues for the production of biotechnologically important products. In this study, the maximum pectinase production attained was using wheat bran, among the tested agroresidues. The production of pectinase was improved from 10.1 ± 1.4 U/ml to 66.3 ± 1.2 U/ml in submerged fermentation whereas it was in solid state fermentation from 800.0 ± 16.2 U/g to 1272.4 ± 25.5 U/g. The maximum pectinase production was observed using YEP (submerged fermentation) and wheat bran (solid state fermentation) at initial pH of 6.5, at 37°C and by supplementing the medium with 3 mM MgSO4.7H2O.


Sign in / Sign up

Export Citation Format

Share Document